Abstract:
Some embodiments include a memory device and a method of programming memory cells of the memory device. One such method can include applying, during a first pass of programming, a first bias voltage value to a source select gate to isolate memory cells from a source, applying a programming voltage to an access line of a page of the memory cells during the first pass of programming, and applying a second bias voltage value to the source select gate to isolate the memory cells from the source during a second pass of programming. Further devices, systems, and methods are disclosed.
Abstract:
Floating gate memory cells in vertical memory. A control gate is formed between a first tier of dielectric material and a second tier of dielectric material. A floating gate is formed between the first tier of dielectric material and the second tier of dielectric material, wherein the floating gate includes a protrusion extending towards the control gate. A charge blocking structure is formed between the floating gate and the control gate, wherein at least a portion of the charge blocking structure wraps around the protrusion.
Abstract:
Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
Abstract:
Memory devices are disclosed, such as those that include a semiconductor-on-insulator (SOI) NAND memory array having a boosting plate. The boosting plate may be disposed in an insulator layer of the SOI substrate such that the boosting plate exerts a capacitive coupling effect on a p-well of the memory array. Such a boosting plate may be used to boost the p-well during program and erase operations of the memory array. During a read operation, the boosting plate may be grounded to minimize interaction with p-well. Systems including the memory array and methods of operating the memory array are also disclosed.
Abstract:
Apparatuses and methods for disturb verify for programming operations are described. Programming memory cells can include applying a number of programming pulses to a first memory cell, performing a disturb verify operation on a second memory cell adjacent to the first memory cell, and inhibiting the first memory cell from further programming in response to the second memory cell failing the disturb verify operation. Other apparatuses and methods are also disclosed.
Abstract:
Memory devices and methods are disclosed, including a method involving erasing a block of memory cells. After erasing the block, and before subsequent programming of the block, a number of bad strings in the block are determined based on charge accumulation on select gate transistors. The block is retired from use if the number of bad strings exceeds a threshold. Additional embodiments are disclosed.
Abstract:
Memory arrays and their formation are disclosed. One such memory array has a string of series-coupled memory cells with a substantially vertical portion. A distance between adjacent memory cells at one end of the substantially vertical portion is greater than a distance between adjacent memory cells at an opposing end of the substantially vertical portion. For other embodiments, thicknesses of respective control gates of the memory cells and/or thicknesses of the dielectrics between successively adjacent control gates may increase as the distances of the respective control gates/dielectrics from the opposing end of the substantially vertical portion increase.
Abstract:
A processing device in a memory sub-system determines that an amount of host data in a first portion of a memory device configured as a program buffer satisfies a buffer threshold criterion and initiates an initial program pass of first host data from the program buffer to a second portion of the memory device configured as a primary memory. The processing device further determines that the first host data is to be evicted from the program buffer, and initiating a final program pass of the first host data from the program buffer to the primary memory.
Abstract:
An apparatus can comprise a memory array comprising a plurality of strings of memory cells. A first string of the plurality of strings can comprises: a first group of memory cells coupled to a first group of access lines and corresponding to a first erase block; and a second group of memory cells coupled to a second group of access lines and corresponding to a second erase block. A controller is coupled to the memory array and configured to, in order to selectively erase the second erase block independently of the first erase block: apply a voltage having a first value to a sense line coupled to the plurality of strings; apply a voltage having a second value less than the first value to the first group of access lines; and apply a voltage having a third value less than the second value to the second group of access lines.
Abstract:
A memory array includes a block including wordlines, bitlines, and strings each connected to a respective bitline. The block is divided into a sub-blocks. Each sub-block includes a respective set of the strings, and each string of the set of strings is located at a sub-block position within its respective sub-block. Control logic performs operations including selecting each sub-block, causing a first voltage to be applied to a dummy wordline to activate a first set of dummy cells and deactivate a second set of dummy cells, and causing a second voltage to be applied to a selected wordline. Each sub-block includes a single string corresponding to an open string connected to a dummy cell of the first set of dummy cells. The second voltage causes data to be read out from each open string to a respective page buffer.