INTEGRATED GATE CONTACT AND CROSS-COUPLING CONTACT FORMATION

    公开(公告)号:US20200152518A1

    公开(公告)日:2020-05-14

    申请号:US16185675

    申请日:2018-11-09

    Abstract: Methods of forming cross-coupling contacts for field-effect transistors and structures for field effect-transistors that include cross-coupling contacts. A dielectric cap is formed over a gate structure and a sidewall spacer adjacent to a sidewall of the gate structure. A portion of the dielectric cap is removed from over the sidewall spacer and the gate structure to expose a first portion of the gate electrode of the gate structure at a top surface of the gate structure. The sidewall spacer is then recessed relative to the gate structure to expose a portion of the gate dielectric layer at the sidewall of the gate structure, which is removed to expose a second portion of the gate electrode of the gate structure. A cross-coupling contact is formed that connects the first and second portions of the gate electrode of the gate structure with an epitaxial semiconductor layer adjacent to the sidewall spacer.

    Inner spacer formation in a nanosheet field-effect transistor

    公开(公告)号:US10651291B2

    公开(公告)日:2020-05-12

    申请号:US15680467

    申请日:2017-08-18

    Abstract: Structures for a nanosheet field-effect transistor and methods for forming a structure for a nanosheet field-effect transistor. A body feature is formed that includes a sacrificial layer arranged vertically between the first and second nanosheet channel layers. The sacrificial layer is laterally recessed at a sidewall of the body feature to expose respective portions of the first and second nanosheet channel layers. A sacrificial spacer is formed by oxidizing a portion of the sacrificial layer at the sidewall of the body feature. Sections of a semiconductor material are epitaxially grown on the exposed portions of the first and second nanosheet channel layers to narrow a gap vertically separating the first and second nanosheet channel layers. The sacrificial spacer is removed to form a cavity between the sections of the semiconductor material and the sacrificial layer. A dielectric spacer is conformally deposited in the cavity.

    INTEGRATED CIRCUIT STRUCTURE WITH COMPLEMENTARY FIELD EFFECT TRANSISTOR AND BURIED METAL INTERCONNECT AND METHOD

    公开(公告)号:US20200111798A1

    公开(公告)日:2020-04-09

    申请号:US16152454

    申请日:2018-10-05

    Abstract: Disclosed are structures with a complementary field effect transistor (CFET) and a buried metal interconnect that electrically connects a source/drain region of a lower-level transistor of the CFET with another device. The structure can include a memory cell with first and second CFETs, where each CFET includes a pull-up transistor stacked on and having a common gate with a pull-down transistor and each pull-down transistor has a common source/drain region with a pass-gate transistor. The metal interconnect connects a lower-level source/drain region of the first CFET (i.e., the common source/drain region of first pass-gate and pull-up transistors) to the common gate of the second CFET (i.e., to the common gate of second pull-down and pull-up transistors). Formation methods include forming an interconnect placeholder during lower-level source/drain region formation. After upper-level source/drain regions and replacement metal gates are formed, the interconnect placeholder is exposed, removed and replaced with a metal interconnect.

    Methods of forming gate contact over active region for vertical FinFET, and structures formed thereby

    公开(公告)号:US10559686B2

    公开(公告)日:2020-02-11

    申请号:US16018970

    申请日:2018-06-26

    Abstract: Methods of making a vertical FinFET device having an electrical path over a gate contact landing, and the resulting device including a substrate having a bottom S/D layer thereover and fins extending vertically therefrom; a bottom spacer layer over the bottom S/D layer; a HKMG layer over the bottom spacer layer; a top spacer layer over the HKMG layer; a top S/D layer on top of each fin; top S/D contacts formed over the top S/D layer; an upper ILD layer present in spaces around the top S/D contacts; an isolation dielectric within a portion of a recess of top S/D contacts located above adjacent fins; a gate contact landing within a remaining portion of the recess; a gate contact extending vertically from a bottom surface of the gate contact landing and contacting a portion of the HKMG layer; and an electrical path over at least the gate contact landing.

    METHOD FOR FORMING AND TRIMMING GATE CUT STRUCTURE

    公开(公告)号:US20190341468A1

    公开(公告)日:2019-11-07

    申请号:US15971043

    申请日:2018-05-04

    Abstract: A method includes forming a semiconductor device including a plurality of fins formed above a substrate, an isolation structure positioned between the plurality of fins, a plurality of sacrificial gate structures defining gate cavities, and a first dielectric material positioned between the sacrificial gate structures. A gate cut structure is formed in a first gate cavity. A trim etch process is performed to reduce a width of the gate cut structure. Replacement gate structures are formed in the gate cavities after performing the trim etch process. A first replacement gate structure in the first gate cavity is segmented by the gate cut structure.

Patent Agency Ranking