Abstract:
A method for forming a memory device is disclosed. A dielectric layer is formed on a substrate. A Sn doped phase change layer is formed on the dielectric layer. A patterned mask layer is formed on the Sn doped phase change layer. The Sn doped phase change layer is etched by an etchant comprising fluorine-based etchant added with chlorine using the patterned mask layer as a mask to pattern the Sn doped phase change layer. An electrode is formed, electrically connecting the patterned Sn doped phase change layer.
Abstract:
A dynamic random access memory (DRAM) includes a substrate, an active device and a deep trench capacitor. A trench and a deep trench are formed in the substrate. The active device is disposed on the substrate. The active device includes a gate structure and a doped region. The gate structure is disposed on the substrate and fills the trench. The doped region is disposed in the substrate at a first side of the gate structure. The deep trench capacitor is disposed in the deep trench of the substrate at a second side of the gate, and the second side is opposite to the first side. In addition, an upper electrode of the deep trench capacitor is adjacent to the bottom of the trench.
Abstract:
A method for fabricating a capacitor includes firstly providing a substrate. A doped first dielectric layer and an undoped second dielectric layer are then formed on the substrate sequentially. Next, many trenches are formed in the first and the second dielectric layers. Afterwards, an ion implantation process is performed in the largest space between the adjacent trenches to form an ion-implanted region in a portion of the second dielectric layer in upper parts of the trenches. A wet etching process is then performed to remove a portion of the second dielectric layer in the ion-implanted region and a portion of the first dielectric layer at bottoms of the trenches. Thereafter, a first conductive layer and a capacitor dielectric layer are formed sequentially on surfaces of the trenches. Finally, a second conductive layer is formed in the trenches.
Abstract:
A phase-change memory is provided. The phase-change memory comprises a substrate. A first electrode is formed on the substrate. A circular or linear phase-change layer is electrically connected to the first electrode. A second electrode formed on the phase-change layer and electrically connected to the phase-change layer, wherein at least one of the first electrode and the second electrode comprises phase-change material.
Abstract:
A phase-change memory is provided. The phase-change memory comprises first and second electrodes, wherein the first and second electrodes comprise phase-change material. A conductive path is formed between the first and second electrodes and electrically connects the first and second electrodes, wherein the conductive path comprises an embedded metal layer and a phase-change layer resulting in current from the first electrode to the second electrode or from the second electrode to the first electrode passing through the embedded metal layer and the phase change layer.
Abstract:
A phase change memory device is provided. The phase change memory device includes a substrate. A metal plug is disposed on the substrate and a phase change material film is disposed on the metal plug, wherein the metal plug is electrically connected to the phase change material film. A heating electrode is disposed on the phase change material film, wherein the heating electrode is electrically connected to the phase change material film. A conductive layer is disposed on the heating electrode.
Abstract:
A data bus circuit for an integrated circuit memory includes a 4-bit bus per I/O pad that is used to connect the memory with an I/O block, but only two bits per I/O are utilized for writing. Four bits per I/O pad are used for reading. At every falling edge of an input data strobe, the last two bits are transmitted over the bus, which eliminates the need for the precise counting of input data strobe pulses. The data bus circuit is compatible with both DDR1 and DDR2 operating modes.
Abstract:
An integrated circuit device comprises a substrate, a stack structure including circuit structure having conductive lines positioned on the substrate, a reinforcement structure including at least one supporting member positioned on the substrate and a roof covering the circuit structure and the supporting member and at least one bonding pad positioned on the roof and electrically connected to the conductive lines. A method for preparing an integrated circuit device comprises forming a stack structure including circuit structure having conductive lines on a substrate, forming a reinforcement structure including at least one supporting member on the substrate and a roof covering the supporting member and the circuit structure and forming at least one bonding pad on the roof and electrically connecting to the conductive lines.
Abstract:
A method of fabricating an electrode of a capacitor is provided. A substrate is provided and a dielectric layer is then formed thereon. After that, one multilayer mask is formed on the dielectric layer to expose a portion of the dielectric layer, wherein the multilayer mask consists of at least two layers of materials having different etching rates respectively. The exposed dielectric layer is removed to form a trench, and then the dielectric layer is over-etched, so as to widen the inside diameter of the trench. Thereafter, a conductive layer is formed on the substrate, and thus the multilayer mask and a surface of the trench are covered with the conductive layer. The conductive layer except that in the trench is then removed so as to form the electrode of the capacitor. Therefore, it can prevent the conductive layer from generating more loss.
Abstract:
A flash memory structure comprises a silicon substrate having at least one concave structure, two doped regions positioned in the semiconductor substrate and at two sides of the concave structure, at least one carrier-trapping region positioned in the concave structure, and a conductive layer positioned above the concave structure. The concave structure comprises two grooves having a U-shaped or V-shaped profile. The grooves have an inclined plane with (111) orientation and a bottom plane with (100) orientation of the silicon substrate. The carrier-trapping region comprises a dielectric stack positioned in the concave structure, wherein the dielectric stack comprises a first oxide layer positioned on the surface of the silicon substrate, a nitride block positioned on the surface of the first oxide layer and in the concave structure, and a second oxide layer covering the first oxide layer and the nitride block.