Abstract:
Poly(propylene fumarate) is copolymerized with poly(caprolactone) diol to produce a block copolymer of poly(propylene fumarate) and poly(caprolactone). The biocompatible and bioresorbable block copolymer of poly(propylene fumarate) and poly(caprolactone) is useful in the fabrication of injectable and in-situ hardening scaffolds for tissue and/or skeletal reconstruction. The block copolymer can be crosslinked by redox or photo-initiation, with or without an additional crosslinker. Thus, the copolymer is both self-crosslinkable (without the use of any crosslinkers) and photocrosslinkable (in the presence of photons such as UV light).
Abstract:
A method for producing a bio-based polymeric shoe component includes: preparing a blend from a composition including 5˜50 weight parts of a modified starch, 50˜95 weight parts of an ethylene vinyl acetate copolymer, 5˜30 weight parts of a filler, 1˜50 weight parts of a polyolefin, 2.0˜8.0 weight parts of a foaming agent, 0.5˜3.0 weight parts of a foaming aid, 0.5˜2.0 weight parts of a lubricant, and 0.4˜1.2 weight parts of a crosslinking agent, the modified starch being obtained by hydrolyzing and esterifying a predetermined amount of a raw starch to form a hydrolyzed and esterified starch, followed by drying the hydrolyzed and esterified starch; processing the blend into a foamable product; and forming the foamable product into the shoe component.
Abstract:
The present invention relates to water-based and water-free, lightweight modeling compositions comprising a filler made of EVA foam particles and a water-based or water-free matrix. Advantageously, the modeling composition has little to no shrinkage over time and it has an increased product life.
Abstract:
A process for the continuous production of granules based on thermoplastic polymers includes at least one expandable agent and, optionally, other polymers or additives, among which inorganic pigments insoluble in the polymeric matrix, wherein a first main stream is prepared, in the molten state, and a second stream in the molten state, which englobes the additives and which is added to the first stream. The mixture is extruded through a die which is cooled by means of water jets from nozzles positioned behind the cutting blades.
Abstract:
The present invention provides a closed-cell foamed rubber sheet whose sealability is less likely to decrease even after long-time use and which has excellent water resistance. The closed-cell foamed rubber sheet of the present invention comprises a rubber-based resin, and is provided by the steps of: providing a foamable resin composition containing the rubber-based resin and a foaming agent; irradiating the foamable resin composition with ionizing radiation to cross-link the foamable resin composition; and foaming the cross-linked foamable resin composition. In the case where the foamable resin composition further contains 0.5 parts by weight or more of a powdery additive other than the foaming agent per 100 parts by weight of the rubber-based resin, the rubber-based resin preferably contains a rubber-based resin ingredient which is in a liquid state at normal temperature.
Abstract:
The invention relates to an active ingredient composition which has a high content in thermosensitive foaming agents and one or more polyolefin resins, the portion which is larger in quantity being a metallocene and optionally the remaining resins being polar or nonpolar nonmetallocene polyolefin resins. All polyolefin resins add up to at least 10% by weight of the formulation and have a melting point between 80 and 170° C. The reduced dust active ingredient composition according to the invention is used for the masterbatch production of foamed plastics.
Abstract:
A post-crosslinked adsorbent comprises: monomer units of (a) at least 47 wt % at least one polyvinylaromatic monomer and (b) up to 53 wt % at least one monovinylaromatic monomer; and 0-0.2 mmol/g pendent vinyl groups; wherein the dry adsorbent has BET specific surface area in the range of about 700-1500 m2/g, BET average pore diameter 6.0-11.8 nm, BET porosity 1.2-3.5 mL/g, BJH adsorption micropore volume less than 20% of total BJH adsorption pore volume, and HK micropore volume less than 24% of total BJH adsorption pore volume. The invention is also directed to a preparation method for the polymeric adsorbent.
Abstract:
A foaming composition includes a fluoropolymer, a nucleating agent and a pigment, wherein said pigment is a manganese-antimony-titanium (Mn—Sb—Ti) oxide pigment.
Abstract:
This invention relates to a foamable resol type phenolic resin forming material comprising a liquid resol type phenolic resin, a foaming agent, a foam stabilizer, an additive and an acid curing agent, said additive containing a nitrogen-containing bridged cyclic compound and said foam stabilizer containing a chlorinated aliphatic hydrocarbon compound having 2 to 5 carbon atoms, and a phenolic resin foam product obtained by foaming and curing this forming material.
Abstract:
The present invention provides a molded product exhibiting excellent various properties by improving compatibility of an ethylene/α-olefin/non-conjugated polyene copolymer with a polyolefin resin and a rubber composition for forming the molded product. The present invention further provides a molded product which comprises a rubber composition, is inhibited from fogging and tackiness and is excellent in mechanical strength and heat aging resistance. The rubber composition of the invention comprises an ethylene/α-olefin/non-conjugated polyene copolymer (A), and a polyolefin resin (B) having Mn of not less than 10,000 and/or an ethylene/α-olefin copolymer (C) having Mn of 2500 to 5000, and satisfies the following requirements: (1) a maximum value and a minimum value of an ethylene distribution parameter P of the component (A) have a relationship of Pmax/Pmin≦1.4, and (2) the B value of the component (C) ([EX]/(2[E]×[X])) ([E] and [X] are molar fractions of ethylene and the α-olefin of 3 to 20 carbon atoms, respectively, and [EX] is a fraction of dyad sequence of ethylene/α-olefin of 3 to 20 carbon atoms) is not more than 1.05.