Abstract:
A solid mercury-releasing material and a method of dispensing precise amounts of mercury into the light emitting chamber of a discharge lamp without introducing the other dispenser components into the chamber are disclosed. The solid material includes an amalgam of one or more metals and mercury in the form of particles of high purity, uniform size and uniform composition.
Abstract:
A metal halide lamp comprises a refractory, light-transmitting hermetic vessel, a pair of electrodes sealed in the hermetic vessel, a discharge medium including a halide and a rare gas, and metal storing means storing at least one selected from the group consisting of potassium (K), rubidium (Rb) and cesium (Cs), the metal storing means being heated during lighting and gradually discharging at least one metal in the hermetic vessel.
Abstract:
A discharge tube is disclosed that includes: an airtight tube having first and second end surfaces each including a metallized surface; first and second discharge electrodes joined to the respective metallized surfaces; and multiple trigger lines formed on the inner wall surface of the airtight tube to extend along the axial directions of the airtight tube. The first and second discharge electrodes are joined to the metallized surfaces so that a discharge gap is formed between the first and second discharge electrodes and the airtight tube is hermetically sealed. The trigger lines include one or more first trigger lines connected to the metallized surfaces and multiple second trigger lines isolated from the metallized surfaces. The second trigger lines are formed at equal intervals on the inner wall surface of the airtight tube and each first trigger line is formed between a corresponding pair of the second trigger lines.
Abstract:
A light-transmissive discharge vessel (1) encloses a discharge space (10) which contains an ionizable filling comprising an evaporable component. The low-pressure discharge lamp is also provided with coil for maintaining an electric discharge in the discharge space, and with a carrier (3) with a resilient body (30) and an open holder (31). The resilient body (30) is clamped inside a tube (14) which communicates with the discharge space (10). The holder (31) is clamped inside the resilient body (30). In the absence of the holder (31), the resilient body (30) can be inserted in a released state in the tube (14) with play (x).
Abstract:
A mercury dispensing support strip capable of dispensing mercury and sorbing reactive gases. In one embodiment, the support strip of the invention includes at least one track of mercury releasing material deposited on one face of the support strip. At least one track of getter material is also deposited on the same face of the support strip. The tracks of mercury releasing and getter materials are deposited on the support strip such that the mechanical strains exerted by the materials on points of the support strip that are substantially symmetric with respect to a central axis of said first surface of said mercury dispensing support strip are substantially equivalent.
Abstract:
In a pulsed electron beam source based on the vacuum principle, comprising a vacuum diode having a multi-point emission cathode with a flange and a plurality of emission points, a control grid, a pulse generator, a magnetic compression unit consisting of field coils, a drift chamber, a target chamber and a synchronization unit, the multipoint emission cathode is embedded in a shield electrode, and the shield electrode is connected to the cathode base by way of a resistor which is so sized that the shield electrode is capable of freely floating.
Abstract:
Capillary discharge extreme ultraviolet lamp sources for EUV microlithography and other applications. The invention covers operating conditions for a pulsed capillary discharge lamp for EUVL and other applications such as resist exposure tools, microscopy, interferometry, metrology, biology and pathology. Techniques and processes are described to mitigate against capillary bore erosion, pressure pulse generation, and debris formation in capillary discharge-powered lamps operating in the EUV. Additional materials are described for constructing capillary discharge devices fore EUVL and related applications. Further, lamp designs and configurations are described for lamps using gasses and metal vapors as the radiating species.
Abstract:
The high pressure discharge lamp has a discharge vessel (1) mounted in an outer envelope (4) in which an oxygen dispenser (30) is disposed. The oxygen dispenser (30) contains silver oxide and may be disposed at a location where it obtains a temperature of at least 340.degree. C. during operation of the lamp, at which temperature the oxide is decomposed and oxygen is released. The deposit of black coatings originating from hydrocarbon contaminations is thereby prevented.
Abstract:
In a method according to the invention, a capsule (20) having a glass wall (21) and containing mercury is positioned in a radiation-transmitting discharge vessel, after which the discharge vessel is provided with a rare gas and closed, means for maintaining an electric discharge are arranged in or adjacent the discharge vessel, and the capsule is opened by fusion after the discharge vessel has been closed in that the capsule is heated by irradiation (42) with a parallel beam of radiation through the wall of the discharge vessel. The wall of the capsule has for this radiation an absorption coefficient which amounts at least ten times that of the wall portion of the discharge vessel. The method according to the invention renders possible a comparatively simple lamp construction.A low-pressure mercury discharge lamp is provided with a radiation-transmitting discharge vessel (10) which is closed in a gastight manner and has an ionizable filling comprising mercury, while a capsule (20) with a glass wall (21) having an opening (24) is arranged in the discharge vessel, and the lamp is in addition provided with means (31A, 31B) for maintaining an electric discharge in a discharge space (13) surrounded by the discharge vessel. The capsule (20) is accessible to radiation of at least a wavelength lying in a range from 100 nm to 5 .mu.m from outside the discharge vessel (10) through a wall portion (11) thereof, and the wall (21) of the capsule (20) has an absorption coefficient for this radiation which amounts at least ten times that of the wall portion (11) of the discharge vessel.
Abstract:
A mercury dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.