Abstract:
Constructing an SiGe fin by: (i) providing an intermediate sub-assembly including a silicon-containing base layer and a silicon-containing first fin structure extending in an upwards direction from the base layer; (ii) refining the sub-assembly by covering at least a portion of the top surface of the base layer and at least a portion of the first and second lateral surfaces of the first fin structure with a pre-thermal-oxidation layer that includes Silicon-Germanium (SiGe); and (iii) further refining the sub-assembly by thermally oxidizing the pre-thermal oxidation layer to migrate Ge content from the pre-thermal-oxidation layer into at least a portion of the base layer and at least a portion of first fin structure.
Abstract:
A FET structure including epitaxial source and drain regions includes large contact areas and exhibits both low resistivity and low parasitic gate to source/drain capacitance. The source and drain regions are laterally etched to provide recesses for accommodating low-k dielectric material without compromising the contact area between the source/drain regions and their associated contacts. A high-k dielectric layer is provided between the raised source/drain regions and a gate conductor as well as between the gate conductor and a substrate, such as an ETSOI or PDSOI substrate. The structure is usable in electronic devices such as MOSFET devices.
Abstract:
A finned structure is fabricated using a bulk silicon substrate having a carbon doped epitaxial silicon layer. A pFET region of the structure includes silicon germanium fins. Such fins are formed by annealing the structure to mix a germanium containing layer with an adjoining crystalline silicon layer. The structure further includes an nFET region including silicon fins formed from the crystalline silicon layer. The germanium containing layer in the nFET region is removed to create a space beneath the crystalline silicon layer in the nFET region. An insulating material is provided within the space. The pFET and nFET regions are electrically isolated by a shallow trench isolation region.
Abstract:
An electrical device is provided that includes a substrate having an upper semiconductor layer, a buried dielectric layer and a base semiconductor layer. At least one isolation region is present in the substrate that defines a semiconductor device region and a resistor device region. The semiconductor device region includes a semiconductor device having a back gate structure that is present in the base semiconductor layer. Electrical contact to the back gate structure is provided by doped epitaxial semiconductor pillars that extend through the buried dielectric layer. An epitaxial semiconductor resistor is present in the resistor device region. Undoped epitaxial semiconductor pillars extending from the epitaxial semiconductor resistor to the base semiconductor layer provide a pathway for heat generated by the epitaxial semiconductor resistor to be dissipated to the base semiconductor layer. The undoped and doped epitaxial semiconductor pillars are composed of the same epitaxial semiconductor material.
Abstract:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming one or more tall strained silicon germanium (SiGe) fins on a semiconductor on insulator (SOI) substrate. The fins have a germanium (Ge) concentration which may differ from the Ge concentration within the top layer of the SOI substrate. The difference in Ge concentration between the fins and the top layer of the SOI substrate may range from approximately 10 atomic percent to approximately 40 atomic percent. This Ge concentration differential may be used to tailor a strain on the fins. The strain on the fins may be tailored to increase the critical thickness and allow for a greater height of the fins as compared to conventional strained fins of the same SiGe concentration formed from bulk material.
Abstract:
A semiconductor device includes an insulator formed within a void to electrically isolate an active fin from an underlying substrate. The void is created by removing a sacrificial portion formed between the substrate and the active fin. The sacrificial portion may be doped to allow for a greater thickness relative to an un-doped portion of substantially similar composition. The doped sacrificial portion thickness may be between 10 nm and 250 nm. The thicker sacrificial portion allows for a thicker insulator so as to provide adequate electrical isolation between the active fin and the substrate. During formation of the void, the active fin may be supported by a gate. The semiconductor structure may also include a bulk region that has at least a maintained portion of the sacrificial portion material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an inverted, generally T-shaped mandrel feature having a base mandrel structure and a substantially vertically oriented fin mandrel structure, the base mandrel structure having a lateral width that is greater than a lateral width of the fin mandrel structure, forming a sidewall spacer adjacent the sidewalls of the base mandrel structure and the fin mandrel structure, performing at least one etching process to remove portions of the inverted, generally T-shaped mandrel feature not covered by a sidewall spacer, wherein, after the etching process is completed, the sidewall spacers and remaining portions of the mandrel feature, collectively, define a fin pattern, and performing at least one additional process operation to form a plurality of fins in the substrate that correspond to the fin pattern.
Abstract:
A substrate including a handle substrate, a lower insulator layer, a buried semiconductor layer, an upper insulator layer, and a top semiconductor layer is provided. Semiconductor fins can be formed by patterning a portion of the buried semiconductor layer after removal of the upper insulator layer and the top semiconductor layer in a fin region, while a planar device region is protected by an etch mask. A disposable fill material portion is formed in the fin region, and a shallow trench isolation structure can be formed in the planar device region. The disposable fill material portion is removed, and gate stacks for a planar field effect transistor and a fin field effect transistor can be simultaneously formed. Alternately, disposable gate structures and a planarization dielectric layer can be formed, and replacement gate stacks can be subsequently formed.
Abstract:
Merged and unmerged raised active regions on semiconductor fins can be simultaneously formed on a same substrate by control of growth rates of a deposited semiconductor material on surfaces of the semiconductor fins. In one embodiment, a growth-rate-retarding dopant can be implanted by angled ion implantation onto sidewall surfaces of first semiconductor fins on which retardation of growth rates is desired, while second semiconductor fins are masked by a masking layer. In another embodiment, a growth-rate-enhancing dopant can be implanted by ion implantation onto sidewall surfaces of second semiconductor fins, while first semiconductor fins are masked by a masking layer. The differential growth rates of the deposited semiconductor material can cause raised active regions on the first semiconductor fins to remain unmerged, and raised active regions on the second semiconductor fins to become merged.
Abstract:
A method for forming a U-shaped semiconductor device includes growing a U-shaped semiconductor material along sidewalls and bottoms of trenches, which are formed in a crystalline layer. The U-shaped semiconductor material is anchored, and the crystalline layer is removed. Backfilling is formed underneath the U-shaped semiconductor material with a dielectric material for support. A semiconductor device is formed with the U-shaped semiconductor material.