Abstract:
The present invention describes a Smart Gait Rehabilitation System (SGRS). The present invention is capable of performing a quantitative analysis of human movements based on the simultaneous measurement of within-subject stride-to-stride changes in gait using accelerometers, gyroscopes, goniometers, and electromyography (EMG). The system described in the present invention is based on step-training that incorporates sensory feedback, provide feedback about kinematics and torques, and proceeds at walking speeds typical of overground ambulation.
Abstract:
Sexual stimulation devices and methods that provide highly varied and dynamically controllable sensations, both directly under manual control of the user and indirect electronic control, and in such a way as to provide sensations to specific regions of the sexual organs.
Abstract:
An apparatus for applying movement to the joints of a human patient is provided. The apparatus includes an exoskeleton assembly with segments that can be secured to the patient. One or more motor modules are removably coupled to a supporting structure of the exoskeleton assembly, and each motor module includes multiple motor drives. A plurality of actuating members is operatively connected to each motor module. A first end of each actuating member is connected to one of the motor drives and a second end of each actuating member is coupled to a segment of the exoskeleton assembly. Each actuating member can be driven by a respective motor drive to impart movement in multiple degrees of freedom to individual joints.
Abstract:
A sexual stimulation device includes an elongated dildo housing sized to be received within an orifice of a human body, the housing defining an internal cavity extending along a longitudinal axis of the housing, a mass laterally constrained within the cavity and movable linearly along the cavity, and an electrically driven actuator disposed within the housing and operably coupled to the mass. The actuator is operable to accelerate the mass along the cavity and to thereby induce a longitudinal reactive acceleration of the housing.
Abstract:
An apparatus for manipulating joints of a limb of a patient is provided. The limb comprises a plurality of limb segments, Each limb segment connects one or more joints. The apparatus includes one or more motor modules removably coupled to a supporting structure configured on the limb, each motor module including a plurality of motor drives. The apparatus also includes a manipulating exoskeleton assembly comprising a plurality of exoskeleton segments removably secured on a limb segment. Further, a plurality of actuating members is operatively connected to each motor module of the one or more motor modules. A first end of each actuating member is operatively connected to a motor drive of a motor module and a second end is removably coupled to an exoskeleton segment of the plurality of exoskeleton segments. Each actuating member is driven by a motor drive operatively connected to the each actuating member.
Abstract:
A method for controlling movement using an active powered device including an actuator, joint position sensor, muscle stress sensor, and control system. The device provides primarily muscle support although it is capable of additionally providing joint support (hence the name “active muscle assistance device”). The device is designed for operation in several modes to provide either assistance or resistance to a muscle for the purpose of enhancing mobility, preventing injury, or building muscle strength. The device is designed to operate autonomously or coupled with other like device(s) to provide simultaneous assistance or resistance to multiple muscles.
Abstract:
An apparatus for manipulating the joint of a patient is provided. The apparatus comprises an actuator and a linkage. The actuator itself comprises: 1) a cylinder portion defining an interior cavity; and 2) an inflatable bladder member at least partially inside the cavity of the cylinder portion. The linkage is operatively positioned intermediate the actuator and the joint of the patient, the linkage configured to be activated and to flex the joint upon inflation of the bladder. A piston portion may also be provided and configured to move relative to cylinder portion within the cavity in response to inflation of the bladder. A patient connection and manipulation device may also be provided within the apparatus and configured to be attached relative to the patient, attached intermediate the linkage and the patient, and configured to at least partially assist with treatment upon activation of the linkage.
Abstract:
A biomimetic mechanical joint for generating a variable torque between support members of a biomimetic robotic device, including a base support member, a rotary support member rotatably coupled to the base support member, and a variable-radius pulley operably coupled between the base support member and rotary support member. The variable-radius pulley comprises a sheave body having a variable radius and one or more tendon grooves formed in the circumferential outer surface. The mechanical joint further includes one or more flexible tendons and antagonistic actuator pairs, with each actuator pair being coupled to one or more tendons and configured to operate the tendon around the variable-radius pulley in either direction to create a variable torque between the base and rotary support members.
Abstract:
Devices, systems and methods are disclosed for treating bronchial constriction related to asthma, anaphylaxis or chronic obstructive pulmonary disease. The treatment comprises transmitting impulses of energy non-invasively to selected nerve fibers that are responsible for smooth muscle dilation. The transmitted energy impulses, comprising magnetic and/or electrical, mechanical and/or acoustic, and optical and/or thermal energy, stimulate the selected nerve fibers.
Abstract:
A rehabilitation system (10) for training hand movement of a user, the system comprising: a platform (24) to be attached to the hand of the user; a plurality of finger assemblies (71) operatively connected to the platform (24), each finger assembly (71) having: a motor (12), a proximal follower assembly (13) for a metacarpophalangeal (MCP) joint having a proximal rail guide (14) operatively connected to the motor (12), and an intermediate follower assembly (16) for a proximal interphalangeal (PIP) joint having an intermediate rail guide (17) operatively connected to the proximal follower assembly (13); wherein a knuckle joint indicator (22) of the proximal rail guide (14) corresponds to a first virtual center (30) and knuckle joint indicator (25) of the intermediate rail guide (17) corresponds to a second virtual center (31), the alignment of the knuckle joint indicators (22, 25) to the virtual centers (30, 31) enable motion of the finger to be controlled and maintain rotational axes of the finger about each virtual center (30, 31) when the proximal and intermediate follower assemblies (13, 16) are actuated by the motor (12).