Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which can be prevented from galling during repeated fastening and loosening without application of a compound grease. A solid lubricant coating which comprises a lubricating powder such as molybdenum disulfide and a resin binder is formed on the contact surface of at least one of the pin and the box. The solid lubricant coating has a hardness of 70-140 on the Rockwell M scale and an adhesive strength of at least 500 N/m as determined by the SAICAS (Surface And Interfacial Cutting Analysis System) method, and it exhibits excellent galling resistance even in the environment of high-temperature oil wells. Inclusion of ultraviolet screening fine particles such as titanium oxide fine particles in the solid lubricant coating increases the rust preventing properties of the threaded joint.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agent—although none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.
Abstract:
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agentnullalthough none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which can be prevented from galling during repeated fastening and loosening without application of a compound grease. A solid lubricant coating which comprises a lubricating powder such as molybdenum disulfide and a resin binder is formed on the contact surface of at least one of the pin and the box. The coating is formed by applying a coating fluid and drying the applied coating by first stage heating in the temperature range of from 70null C. to 150null C. and second stage heating in the range of from higher than 150null C. to 380null C. The resulting solid lubricant coating has a hardness of 70-140 on the Rockwell M scale and an adhesive strength of at least 500 N/m as determined by the SAICAS (Surface And Interfacial Cutting Analysis System) method, and it exhibits excellent galling resistance even in the environment of high-temperature oil wells. Inclusion of ultraviolet screening fine particles such as titanium oxide fine particles in the solid lubricant coating increases the rust preventing properties of the threaded joint.
Abstract:
A metal material subjected to a treatment for seizure prevention is provided. The metal material includes a metal base material and a film formed thereon, the film being composed of a carbodiimide group-containing resin obtained from an aromatic polyisocyanate or of a mixture of said carbodiimide group-containing resin and a lubricant. A method for producing a metal material subjected to a treatment for seizure prevention is also provided. The method includes coating, on a metal base material, a carbodiimide group-containing resin obtained from an aromatic polyisocyanate or a mixture of said carbodiimide group-containing resin and a lubricant, and then subjecting the coated metal base material to a heat treatment at a temperature of 120° C. or higher.
Abstract:
Die release lubricant is made from powder solid lubricant, adhesion enhancer made of organic or inorganic compound and volatile solvent. Before melted metal is injected into a die for casting, the die release lubricant is sprayed to an inside surface of the die. The die release lubricant is in a liquid state and is uniformly applied to the inside surface of the die. As a result, application efficiency of the die release lubricant is improved while an amount of thermal decomposition gas generated during casting is reduced.
Abstract:
A resin composition which exhibits good sealability while keeping creep deformation to a minimum when brought into sliding contact with a mating member at a high contact pressure of over 10 MPa, and which will not damage a mating member made from an aluminum alloy while sliding in contact with lubricating oil. The resin composition is a pressure-resistant, sliding tetrafluoroethylene resin composition containing 100 parts by volume of a modified tetrafluoroethylene resin in the form of a copolymer of tetrafluoroethylene and partially modified tetrafluoroethylene, 5-40 parts by volume of carbon fiber, and 2-30 parts by volume of calcium sulfate whiskers having a Mohs hardness of 4 or less, and having, at 100° C., a maximum deformation rate in 24 hours, of 15% or less. A seal device to be brought into slide contact with an aluminum metal is molded from such a pressure-resistant, sliding tetrafluoroethylene resin composition.