Abstract:
A connection member that connects an electric substrate and a light source that emits a light beam, the connection member comprising: a light source terminal insertion portion into which a light source terminal of the light source is inserted from one end portion side and having another end portion side that penetrates the electric substrate.
Abstract:
A rearview assembly comprising a rearview element, a rearview element support assembly supporting the rearview element and a mount adjacent the housing. The mount is configured to connect the rearview assembly to a windshield. At least one of the rearview element support assembly and the mount comprises a crush bracket having at least two legs adapted to be compressed as a force strikes a front of the rearview element. The crush bracket can include at least one tab contacting a heat emitting component and/or an electrically conductive component of a circuit to provide a heat sink for the heat emitting component or a ground for the electrically conductive component, respectively.
Abstract:
The present invention relates to a light emitting diode module, as well as a backlight assembly and a display device including the same. The light emitting diode module according to an exemplary embodiment of the present invention includes a printed circuit board having a plurality of junction holes, a plurality of light emitting diodes having a light emitting portion for emitting light and a lead portion with one end electrically connected to the light emitting portion and the other end positioned in a corresponding junction hole, and a junction member filled in the corresponding junction hole in which the lead portion is positioned.
Abstract:
A piezoelectric resonator comprises: an insulating package provided with a concave portion at a lower region thereof, an piezoelectric resonator installed within the concave portion of the insulating package; a lid sealing a lower opening of the concave portion; and a metal lead terminal of which a upper region is electromechanically connected and fixed to the outer terminal installed at the outer surface of the insulating package, and a lower region thereof is projected downward from the lid. The metal lead terminal includes a drooping portion extending along the side surface of the insulating package and a connecting member extending from the lower part of the drooping portion. The drooping portion is not constrained from the connecting member, and the drooping portion and the connecting member are capable of elastically deformed.
Abstract:
In a two-pole SMT miniature housing in leadframe technique for semiconductor components, a semiconductor chip is mounted on one leadframe part and is contacted to a further leadframe part. The further leadframe part is conducted out of the housing in which the chip is encapsulated as a solder terminal. No trimming or shaping process is required and the housing is tight and is capable of further miniaturization. The solder terminals as punched parts of the leadframe are conducted projecting laterally from the housing sidewalls residing opposite one another at least up to the housing floor which forms the components' mounting surface. The chip mounting surface and the components' mounting surface form a right angle with one another.
Abstract:
The invention provides a fixing structure for an electron device that enables an electron device to be attached and removed from wiring with one touch. The structure is provided with bus bars formed from conductive plate material that are connected to a power source, and an LED which has lead electrodes fixed to the bus bars and which is supplied with electricity therefrom. Fixing portions of the bus bars are provided with position determining tabs for positioning the lead electrodes, and an elastic contacting tab that elastically holds each lead electrode. The position determining tabs and the elastic contacting tabs are formed by bending portions of the bus bars. Accordingly, there is no need to provide components separate from the bus bars. When attachment and removal is performed, the LED is pushed downward toward or lifted up from the fixing portions of the bus bars.
Abstract:
An electronic component includes: an element having a pair of terminal electrodes; and a pair of metal terminals formed of metal materials respectively and connected to the pair of terminal electrodes respectively, in which: a portion of the metal terminal that extends from a base-end side of the metal terminal connectable to an external circuit to face the terminal electrode of the element is an electrode facing portion; and a tip side portion of the metal terminal in the electrode facing portion is connected to the terminal electrode, and a gap exists between a base-end side portion of the metal terminal in the electrode facing portion and the terminal electrode. Therefore, the electronic component is capable of fully absorbing a stress and realizes reduction in production cost.
Abstract:
Certain exemplary embodiments comprise a system for mounting an LED. The system can comprise a mounting device and a first bracket coupleable to a surface of the mounting device. The first bracket can be releasably and/or clampably attachable to a first electrically substantially conductive lead of an LED. The first electrically substantially conductive lead can extend substantially in a radial plane of the LED.
Abstract:
A joint structure of electronic element for linking circuit board and electronic element is provided. The joint structure of an electronic element for being electrically connected to a circuit board has at least one slot positioned thereon. And, the joint structure of the electronic element includes: at least one terminal which has a curved portion including a deflected angle with a normal line of a plane of the circuit board, wherein when the joint structure of the electronic element is connected with the slot, the terminal produces an elastic stress through suffering a jostle from the slot so as to urge against the slot for forming an electrical connection therebetween.
Abstract:
In a two-pole SMT miniature housing in leadframe technique for semiconductor components, a semiconductor chip is mounted on one leadframe part and is contacted to a further leadframe part. The further leadframe part is conducted out of the housing in which the chip is encapsulated as a solder terminal. No trimming or shaping process is required and the housing is tight and is capable of further miniaturization. The solder terminals as punched parts of the leadframe are conducted projecting laterally from the housing sidewalls residing opposite one another at least up to the housing floor which forms the components' mounting surface. The chip mounting surface and the components' mounting surface form a right angle with one another.