Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for configuring coordinated multipoint (CoMP) for network devices. In various embodiments, configuration of the CoMP may be based on channel state information reference signals. Other embodiments may be described and/or claimed.
Abstract:
Examples are disclosed for causing one or more subframes to be transmitted from a base station for a wireless network based on beamforming or transmission power characteristics. In some examples, an interference report may be received at a base station via a backhaul communication link. The interference report may indicate measured interference from the base station as measured at one or more wireless devices. The base station may transmit subsequent subframes in a manner to mitigate the previously reported interference. Other examples are described and claimed.
Abstract:
In a multi-antenna, multicarrier transmitter, a multicarrier communication signal is generated by normalizing beamforming matrices based on an average subcarrier power loading for each of the transmit antennas. One or more spatial streams may be transmitted by two or more antennas.
Abstract:
A generation node B (gNB) configured for aperiodic channel state information reference signal (CSI-RS) triggering and transmission may encode signalling for transmission to a user equipment (UE). The signalling to indicate an aperiodic Triggering Offset (aperiodicTriggeringOffset). The aperiodic Triggering Offset may comprise a slot offset. The gNB may encode a downlink control information (DCI) for transmission that may trigger transmission of a CSI-RS in one or more aperiodic CSI-RS resource set(s) (i.e., in one or more slots (n)). The DCI triggers transmission of the aperiodic CSI-RS within a triggered slot with the slot offset (i.e., the aperiodicTriggeringOffset). The gNB may transmit the CSI-RS in resource elements of the triggered slot in accordance with the slot offset, when CSI-RS resources are available in the slot at the slot offset. The gNB may postpone transmission of the aperiodically triggered CSI-RS to a first available downlink slot when the CSI-RS resources are not available in the triggered slot at the slot offset.
Abstract:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
Abstract:
Described is an apparatus of a User Equipment (UE) operable to communicate with a fifth-generation Evolved Node-B (gNB) on a wireless network. The apparatus may comprise a first circuitry and a second circuitry. The first circuitry may be operable to process a message comprising an indicator to indicate a number of contention based physical random access channel (PRACH) preambles within a PRACH occasion per Synchronization Signal Block (SSB). The second circuitry may be operable to generate a first PRACH occasion, based on the indicator.
Abstract:
Embodiments of the present disclosure describe apparatuses, systems, and methods for initialization of pseudo noise (PN) sequences for reference signals and data scrambling. Some embodiments may be to initialize the first M-sequence of the PN sequence with a fixed value; and initialize the second M-sequence of the PN sequence with a compressed value. Some embodiments may be to initialize the first M-sequence of the PN sequence with a fixed value; initialize the second M-sequence of the PN sequence with a part of the initialization parameters; and shift the PN sequence by another part of the initialization parameters. Some embodiments may be to initialize the first M-sequence of the PN sequence with a part of the initialization parameters; and initialize the second M-sequence of the PN sequence with another part of the initialization parameters. The embodiments may lead to a more efficient hardware design.
Abstract:
Various embodiments include devices, methods, computer-readable media and system configurations for reference signal generation and resource allocation. In various embodiments, a wireless communication device may include a control module, which may be operated by a processor and configured to transmit to a user equipment (“UE”) device, over a wireless communication interface, a parameter specific to the UE device; wherein the parameter is usable by the eNB to generate a user equipment-specific reference signal (“UE-RS”) to be sent to the UE device. The parameter may be usable by the UE device to identify the UE-RS to facilitate demodulation of multiple-input, multiple-output communications. In various embodiments, a control module may be configured to store, in memory, priority rules, and to determine a UE-RS resource allocated to another UE device based on a UE-RS resource allocated to the UE device and the priority rules.
Abstract:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.