Abstract:
A light source module of scanning device includes a first light guide rod, a second light guide rod, and a light emitting diode. The first light guide rod has a first incident surface and is disposed at a first end portion. The second light guide rod has a second incident surface and is disposed at a second end portion. The light emitting diode is disposed between the first end portion and the second end portion.
Abstract:
A light emitting diode comprising a semiconductor layer, a first electrode, a second electrode and a diamond-like carbon layer is provided. The semiconductor layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. Wherein, the light emitting layer locates between the first type doped semiconductor layer and the second type doped semiconductor layer. The first electrode is electrically connected to the first type doped semiconductor layer. The second electrode is electrically connected to the second type doped semiconductor layer. The diamond-like carbon layer covers on the semiconductor layer and exposes at least a portion of the first electrode. Moreover, the exposed outer surface of the diamond-like carbon layer is a rough surface. Alternatively, other passivation layer with rough surface can be substituted for the diamond-like carbon layer.
Abstract:
A substrate-free LED device is provided. The LED device comprises a substrate, an epitaxial layer disposed on the substrate, a first electrode disposed on a portion of the epitaxial layer, a second electrode disposed on another portion of the epitaxial layer, and a protection layer, disposed over the epitaxial layer. It is noted that in the LED device, the substrate comprises, for example but not limited to, high heat-sink substrate, and the protection layer comprises, for example but not limited to, high heat-sink, high transparent material.
Abstract:
The present invention provides a method for increasing adhesion of color filters and preventing cross talk effects on a semiconductor wafer. The method first involves forming a dielectric layer on the semiconductor wafer, which covers each MOS transistor sensor formed on the surface of the semiconductor wafer. Then, a plurality of metal layers are formed on the dielectric layer, each two metal layers positioned approximately above two ends of one MOS transistor sensor. Next, a passivation layer is formed, followed by the formation of a first color filter on the passivation layer. The two ends of the first color filter are aligned approximately above the two metal layers. Thereafter, a second color filter and a third color filter are sequentially formed on the passivation layer, and portions of both the second color filter and the third color filter cover one end of the first color filter. The portions of each color filter covering one other are used to enhance adhesion of the color filters, and simultaneously to function as barriers to prevent cross talk effects.
Abstract:
An electronic device and a method for controlling a fan operation are provided. A containing space of the electronic device has a fan module and a deformation sensor. The deformation sensor detects whether a fan housing of the fan module is deformed. The deformation sensor transmits a deformation signal to a controller when detecting that the fan housing is deformed. The controller drives a fan blade of the fan module to stop running after receiving the deformation signal.
Abstract:
An LED package includes a substrate, an electrode layer, a light-emitting chip, a reflection cup and an encapsulation. The substrate includes a first surface, an opposite second surface, and two side surfaces. The electrode layer is consisted of a positive electrode and a negative electrode, each of which extends from the first surface to the second surface via a respective side surface. The light-emitting chip is located on the first surface of the substrate and electrically connected to the electrode layer. The reflection cup comprises a first part covering the electrode layer on the side surfaces of the substrate, a second part with a bowl-like shape on the first surface of the substrate and surrounding the light-emitting chip. The encapsulation is filled in the second part of the reflection cup.
Abstract:
An LED module includes an LED and a light-guiding board. The light-guiding board includes a light-incident face facing the LED, a light-emergent face, a light-reflecting face opposite to the light-emergent face, and a light-converting layer containing phosphors therein. Light emitted from the LED sequentially moves the light-incident face, the light-converting layer and the light-emergent face to leave the light-guiding board. The light-converting layer has a uniform thickness.
Abstract:
An electronic device includes a housing, a module, a main board, and a fan. The module, the main board and the fan are all installed in the housing. The main board divides the interior of the housing into a first space and a second space, and there exists a channel opening between the main board and the module so as to communicate the first space with the second space. The fan is electrically connected to the main board, has a fan outlet and is capable of outputting airflow through the fan outlet to the outside of the housing.
Abstract:
A docking station suitable for a portable electronic device includes a base, a supporting component and a first fan. The base includes an airflow guiding slope. The supporting component is disposed on the base and has an airflow guiding structure, in which the portable electronic device is configured to be supported on the supporting component. The first fan is disposed in the base and provides a cooling airflow, in which the airflow guiding slope and the airflow guiding structure guide the cooling airflow to flow into the portable electronic device.