3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
    23.
    发明授权
    3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof 有权
    具有堆叠在石墨烯衬底上的纳米材料的三维纳米结构及其制造方法

    公开(公告)号:US08808860B2

    公开(公告)日:2014-08-19

    申请号:US13322385

    申请日:2010-09-20

    Abstract: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.

    Abstract translation: 本发明涉及一种具有层叠在石墨烯衬底上的纳米材料的三维纳米结构; 更具体地说,涉及一种具有至少一种纳米材料的纳米结构的纳米结构,所述纳米材料选自在还原的石墨烯衬底上生长的纳米管,纳米线,纳米针和纳米线。 本发明能够实现3维纳米结构与1维纳米材料和2维石墨烯杂交的协同作用。 本发明的纳米结构体的柔软性和弹性优异,可以容易地转移到具有非平面的任何基材。 而且,纳米材料中的所有结,金属催化剂和石墨烯膜系统形成欧姆电接触,这允许纳米结构容易地结合到场发射器件中。

    Flexible nanocomposite generator and method for manufacturing the same
    24.
    发明授权
    Flexible nanocomposite generator and method for manufacturing the same 有权
    柔性纳米复合材料发生器及其制造方法

    公开(公告)号:US08803406B2

    公开(公告)日:2014-08-12

    申请号:US13307870

    申请日:2011-11-30

    CPC classification number: H01L41/37 B82Y30/00 H01L41/113 H01L41/183

    Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.

    Abstract translation: 提供了一种柔性纳米复合发生器及其制造方法。 根据本发明的柔性纳米复合发生器包括由含有压电纳米颗粒和碳纳米结构的柔性基体形成的压电层; 以及设置在压电体层的两侧的上表面和下表面上的电极层,其中根据本发明的柔性纳米复合材料发生器的制造方法和柔性纳米发生器,可以制造具有 面积大,厚度小。 因此,纳米发生器可以用作纤维或布的一部分。 因此,根据本发明的纳米发生器根据附着的布的弯曲产生动力,使得可以根据人体的运动连续发电。

    Method of manufacturing a flexible piezoelectric device
    25.
    发明授权
    Method of manufacturing a flexible piezoelectric device 有权
    制造柔性压电元件的方法

    公开(公告)号:US08661634B2

    公开(公告)日:2014-03-04

    申请号:US12730907

    申请日:2010-03-24

    Abstract: A method of manufacturing a flexible piezoelectric device including laminating a first metal layer on a silicon oxide layer on a silicon substrate. The method further includes laminating a device on the first metal layer and annealing the first metal layer to oxidize the first metal into a first metal oxide. The method further includes etching the first metal oxide to separate the device from the silicon oxide layer and transferring the separated device to a flexible substrate using a transfer layer. The metal oxide layer laminated on the silicon substrate is etched to separate the device from the substrate. As a result, physical damage of the silicon substrate is prevented and a cost of using expensive single-crystal silicon substrate is reduced.

    Abstract translation: 一种制造柔性压电器件的方法,包括在硅衬底上的氧化硅层上层叠第一金属层。 该方法还包括在第一金属层上层叠器件并退火第一金属层以将第一金属氧化成第一金属氧化物。 该方法还包括蚀刻第一金属氧化物以将器件与氧化硅层分离,并使用转移层将分离的器件转移到柔性衬底。 蚀刻层叠在硅衬底上的金属氧化物层,以使器件与衬底分离。 结果,防止了硅衬底的物理损坏,并且降低了使用昂贵的单晶硅衬底的成本。

    Semiconductor structure and method of fabricating the semiconductor structure
    26.
    发明授权
    Semiconductor structure and method of fabricating the semiconductor structure 有权
    半导体结构及其制造方法

    公开(公告)号:US08482041B2

    公开(公告)日:2013-07-09

    申请号:US13412959

    申请日:2012-03-06

    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.

    Abstract translation: 与用于场效应晶体管(FET)的设计和制造中的常规平面CMOS技术相反,本发明提供了一种SGT CMOS器件,其形成在常规基板上,该传统基板使用与通道类型和柱形 FET,而不需要复杂的器件制造工艺。 此外,与改变每个平面FET中的表面取向的设计技术不同,本发明被设计为改变每个SGT中的表面取向以实现载流子迁移率的改善。 因此,可以在公共基板上形成具有各种晶面的多个SGT,以实现多种不同的载流子迁移率,从而获得期望的性能。

    Semiconductor structure and method of fabricating the semiconductor structure
    28.
    发明授权
    Semiconductor structure and method of fabricating the semiconductor structure 有权
    半导体结构及其制造方法

    公开(公告)号:US08183628B2

    公开(公告)日:2012-05-22

    申请号:US12704975

    申请日:2010-02-12

    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.

    Abstract translation: 与用于场效应晶体管(FET)的设计和制造中的常规平面CMOS技术相反,本发明提供了一种SGT CMOS器件,其形成在常规基板上,该传统基板使用与通道类型和柱形 FET,而不需要复杂的器件制造工艺。 此外,与改变每个平面FET中的表面取向的设计技术不同,本发明被设计为改变每个SGT中的表面取向以实现载流子迁移率的改善。 因此,可以在公共基板上形成具有各种晶面的多个SGT,以实现多种不同的载流子迁移率,从而获得期望的性能。

    3-DIMENSIONAL NANOSTRUCTURE HAVING NANOMATERIALS STACKED ON GRAPHENE SUBSTRATE AND FABRICATION METHOD THEREOF
    29.
    发明申请
    3-DIMENSIONAL NANOSTRUCTURE HAVING NANOMATERIALS STACKED ON GRAPHENE SUBSTRATE AND FABRICATION METHOD THEREOF 有权
    具有堆积在石墨基板上的纳米材料的三维纳米结构及其制造方法

    公开(公告)号:US20120121891A1

    公开(公告)日:2012-05-17

    申请号:US13322385

    申请日:2010-09-20

    Abstract: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.

    Abstract translation: 本发明涉及一种具有层叠在石墨烯衬底上的纳米材料的三维纳米结构; 更具体地说,涉及一种具有至少一种纳米材料的纳米结构的纳米结构,所述纳米材料选自在还原的石墨烯衬底上生长的纳米管,纳米线,纳米针和纳米线。 本发明能够实现3维纳米结构与1维纳米材料和2维石墨烯杂交的协同作用。 本发明的纳米结构体的柔软性和弹性优异,可以容易地转移到具有非平面的任何基材。 而且,纳米材料中的所有结,金属催化剂和石墨烯膜系统形成欧姆电接触,这允许纳米结构容易地结合到场发射器件中。

Patent Agency Ranking