Abstract:
A method of manufacturing a semiconductor device can include forming a tunnel oxide layer on a substrate, forming a floating gate on the tunnel oxide layer and forming a dielectric layer pattern on the floating gate using an ALD process. The dielectric layer pattern can include a metal precursor that includes zirconium and an oxidant. A control gate can be formed on the dielectric layer pattern. The semiconductor device can include the dielectric layer pattern provided herein.
Abstract:
Flash memory devices include a semiconductor substrate having an active region. A gate pattern on the active region includes a floating gate pattern and a control gate pattern with an inter-gate dielectric layer pattern therebetween. The inter-gate dielectric layer pattern includes a plurality of hafnium oxide layers and a plurality of aluminum oxide layers, ones of which are alternately arrayed.
Abstract:
A semiconductor device and a method for forming the same. A dielectric layer is formed on a semiconductor substrate or on a lower electrode of a capacitor. Vacuum annealing is performed on the dielectric layer. Thus, impurities remaining in the dielectric layer can be effectively removed, and the dielectric layer can be densified. As a result, the electrical characteristics of the semiconductor device are improved. For example, the leakage current characteristics of the dielectric layer are improved and capacitance is increased.
Abstract:
A multi layer electromagnetic wave absorber is provided. The absorber includes a surface layer comprising at least one of a dielectric lossy mixture and a magnetic lossy mixture, an absorption layer, laminated on a rear side of the surface layer, comprising: a dielectric lossy mixture having a higher loss than the dielectric lossy mixture for the surface layer, and a magnetic lossy mixture having a higher loss than the magnetic lossy mixture for the surface layer, and a boundary layer, laminated on a rear side of the absorption layer, comprising a conductive material.
Abstract:
An electronic device includes a lower layer, a complex dielectric layer on the lower layer, and an upper layer on the complex dielectric layer. The complex dielectric layer includes an amorphous metal silicate layer and a crystalline metal-based insulating layer thereon. Related fabrication methods are also discussed.
Abstract:
Provided is a semiconductor device including an insulating layer of a cubic system or a tetragonal system, having good electrical characteristics. The semiconductor device includes a semiconductor substrate including an active region, a transistor that is formed in the active region of the semiconductor substrate, an interlevel insulating layer that is formed on the semiconductor substrate and a contact plug that is formed in the interlevel insulating layer and that is electrically connected to the transistor. The semiconductor device may include a lower electrode that is formed on the interlevel insulating layer and that is electrically connected to the contact plug, an upper electrode that is formed on the lower electrode and an insulating layer of a cubic system or a tetragonal system including a metal silicate layer. The insulating layer may be formed between the lower electrode and the upper electrode.
Abstract:
A method for controlling a temperature of a terminal and a terminal supporting the same are provided. A terminal supporting temperature control includes a temperature sensor for detecting a temperature of the terminal, and a controller for performing at least one of a first throttle procedure including driving the controller with a first preset driving frequency when the temperature of the terminal detected by the temperature sensor is a first preset temperature, and driving the controller with a second driving frequency higher than the first driving frequency when the temperature of the terminal is reduced to a second preset temperature lower than the first preset temperature, and a second throttle procedure including driving the controller with the first preset driving frequency for a first time, and driving the controller with the second driving frequency higher than the first driving frequency for a second time after the first time elapses.
Abstract:
In a method of forming a target layer having a uniform composition of constituent materials, a first precursor including a first central atom and a ligand is chemisorbed on a first reaction site of an object. The ligand or the first central atom is then removed to form a second reaction site. A second precursor including a second central atom is then chemisorbed on the second reaction site.
Abstract:
Methods of forming a metal silicate layer and methods of fabricating a semiconductor device including the metal silicate layer are provided, the methods of forming the metal silicate layer include forming the metal silicate using a plurality of silicon precursors. The silicon precursors are homoleptic silicon precursors in which ligands bound to silicon have the same molecular structure.
Abstract:
A semiconductor device and/or gate structure having a composite dielectric layer and methods of manufacturing the same is provided. In the semiconductor device, gate structure, and methods provided, a first conductive layer may be formed on a substrate. A native oxide layer formed on the first conductive layer may be removed. A surface of the first conductive layer may be nitrided so that the surface may be altered into a nitride layer. A composite dielectric layer including the first and/or second dielectric layers may be formed on the nitride layer. A second conductive layer may be formed on the composite dielectric layer. The first dielectric layer may include a material having a higher dielectric constant. The second dielectric layer may be capable of suppressing crystallization of the first dielectric layer.