摘要:
Disclosed are a silicon thin film anode for a lithium secondary battery having enhanced cycle characteristics and capacity and a preparation method thereof. A preparation method for a silicon thin film anode for a lithium secondary battery, comprises: preparing a collector including a metal; forming an anode active material layer including a silicon on the collector; forming one or more interface stabilizing layer, by annealing the collector and the anode active material layer under one of an inert atmosphere, a reduced atmosphere, and a vacuum atmosphere to react a metallic component of at least one of the collector and the anode active material layer with a silicon component of the anode active material layer at an interface therebetween; and forming a carbon coating layer on the anode active material layer by performing an annealing process in a hydrocarbon atmosphere.
摘要:
The present invention relates to a method and an apparatus for continuously separating aromatic dialdehyde from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene. The method for continuously separating aromatic dialdehyde includes the steps of congealing aromatic dialdehyde by cooling the gas-phase reaction mixture including the aromatic dialdehyde, which is obtained by gas-phase oxidation of dimethylbenzene, to 5-70° C. and separating the congealed aromatic dialdehyde from the remaining reaction mixture. Using the method and apparatus in accordance with the present invention, aromatic dialdehyde can be effectively and selectively separated from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene in high yield.
摘要:
The present invention relates to a method and an apparatus for continuously separating aromatic dialdehyde from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene. The method for continuously separating aromatic dialdehyde includes the steps of congealing aromatic dialdehyde by cooling the gas-phase reaction mixture including the aromatic dialdehyde, which is obtained by gas-phase oxidation of dimethylbenzene, to 5-70° C. and separating the congealed aromatic dialdehyde from the remaining reaction mixture. Using the method and apparatus in accordance with the present invention, aromatic dialdehyde can be effectively and selectively separated from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene in high yield.
摘要:
The present invention relates to a method and an apparatus for continuously separating aromatic dialdehyde from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene. The method for continuously separating aromatic dialdehyde includes the steps of congealing aromatic dialdehyde by cooling the gas-phase reaction mixture including the aromatic dialdehyde, which is obtained by gas-phase oxidation of dimethylbenzene, to 5-70° C. and separating the congealed aromatic dialdehyde from the remaining reaction mixture. Using the method and apparatus in accordance with the present invention, aromatic dialdehyde can be effectively and selectively separated from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene in high yield.
摘要:
Disclosed is a method for producing an SiC preform of a high volume fraction used for the manufacture of a metal matrix composite. The method involves the steps of mixing SiC particles of different particle sizes each selected from a range of 0.2 to 48 &mgr;m with an organic binder, an inorganic binder, an aggregating agent, and distilled water, thereby producing a mixture, and stirring the mixture in accordance with a ball milling process, thereby producing a slurry containing the SiC particles, pouring the slurry containing the SiC particles into a mold having upper and lower molds respectively provided with absorbent bodies, and squeezing the slurry in the mold, thereby reducing a residual moisture content of the slurry, completely drying the slurry reduced in residual moisture content, thereby producing an SiC preform, and calcinating the SiC preform. The preform is impregnated with a metal matrix while maintaining a high reinforcement volume fraction of 70 vol % or more. Accordingly, this preform can be widely used for fundamental materials of metal matrix composites used to manufacture electronic packaging components and aerospace components requiring a low thermal expansion coefficient and a high thermal conductivity.
摘要:
Disclosed are a positive photosensitive resin composition that includes (A) an alkali soluble resin including a polybenzoxazole precursor, a polyimide precursor, or a combination thereof, (B) a photosensitive diazoquinone compound, (C) a phenol compound, (D) at least one organic dye having an absorption wavelength of about 400 nm to about 700 nm, and (E) a solvent, wherein the organic dye (D) is included in an amount of about 1 to about 40 parts by weight based on about 100 parts by weight of the alkali soluble resin (A), and a photosensitive resin layer and a display device using the same.
摘要:
A sulfonium compound represented by the following formula (1), a photoacid generator containing the sulfonium compound, and a resist composition containing the photoacid generator are provided: wherein X represents an electron donor group; R1 and R2 each independently represent an alkyl group or the like; R4 to R6 each independently represent an alkyl group, or the like; R3 represents a cyclic alkenediyl group or the like; and −A represents an anion. The sulfonium compound has a photon yield that is controllable by introducing different absorbers to the cation region in one molecule, can address the inconvenience of using a mixture of different photoacid generators when the sulfonium compound is applied as a photoacid generator, has excellent miscibility in a resist, and has enhanced resolution and line edge roughness.
摘要:
The present invention relates to a method of preparing a porous silicon nanorod structure composed of columnar bundles having a diameter of 50-100 nm and a length of 2-5 μm, and a lithium secondary cell using the porous silicon nanorod structure as an anode active material. The present invention provides a high-capacity and high-efficiency anode active material for lithium secondary cells, which can overcome the low conductivity of silicon and improve the electrode deterioration attributable to volume expansion because it is prepared by electrodepositing the surface of silicon powder with metal and simultaneously etching the silicon powder partially using hydrofluoric acid.
摘要:
Disclosed is a positive photosensitive resin composition that includes (A) an alkali soluble resin prepared by a phosphorous-containing diamine represented by the following Chemical Formula 1, (B) a photosensitive diazoquinone compound, and (C) a solvent. A photosensitive resin film prepared using the same and a semiconductor device including the photosensitive resin film are also disclosed. In Chemical Formula 1, each substituent is the same as defined in the detailed description.
摘要:
A method for synthesizing lithium titanium oxide-based anode active material nanoparticles, and more particularly, a method for synthesizing lithium titanium oxide-based anode active material nanoparticles using a supercritical fluid condition is disclosed herein. The method may include (a) preparing a lithium precursor solution and a titanium precursor solution, (b) forming lithium titanium oxide-based anode active material nanoparticles by introducing the lithium precursor solution and titanium precursor solution into an reactor at a supercritical fluid condition, and (c) cleaning and drying the nanoparticles, and may further include (d) calcinating the nanoparticles at 500-1000° C. for 10 minutes to 24 hours after the step (c).