Abstract:
The introduction of a barrier diffusion material, such as nitrogen, into a silicon-containing conductive region, for example the drain and source regions and the gate electrode of a field effect transistor, allows the formation of nickel silicide, which is substantially thermally stable up to temperatures of 500° C. Thus, the device performance may significantly improve as the sheet resistance of nickel silicide is significantly less than that of nickel disilicide.
Abstract:
The present invention allows the manufacturing of field effect transistors with reduced thermal budget. A first amorphized region and a second amorphized region are formed in a substrate adjacent to the gate electrode by implanting ions of a non-doping element, the presence of which does not significantly alter the conductive properties of the substrate. The formation of the amorphized regions may be performed before or after the formation of a source region, a drain region, an extended source region and an extended drain region. The substrate is annealed to achieve solid phase epitaxial regrowth of the amorphized regions and to activate dopants in the source region, the drain region, the extended source region and the extended drain region.
Abstract:
A transistor formed on a substrate comprises a gate electrode having a lateral extension at the foot of the gate electrode that is less than the average lateral extension of the gate electrode. The increased cross-section of the gate electrode compared to the rectangular cross-sectional shape of a prior art device provides for a significantly reduced gate resistance while the effective gate length, i.e., the lateral extension of the gate electrode at its foot, may be scaled down to a size of 100 nm and beyond. Moreover, a method for forming the field effect transistor described above is disclosed.
Abstract:
A method of monitoring the temperature of a rapid thermal annealing (RTA) process and a test wafer for use in this process are disclosed. The method includes the step of forming a distorted surface region in a crystalline semiconductor wafer and the mounting of the wafer in a process chamber for performing the RTA process in a reaction gas containing ambient. The distorted surface region of the semiconductor wafer enables higher diffusion rates of reaction gas components into the wafer surface and therefore a higher growth rate of a reaction product film. The increase of the reaction product film thickness enables an increase of the film thickness measurement accuracy and thus the accuracy in determining the RTA temperature homogeneity. In one embodiment, a distorted surface region in a crystalline silicon test wafer is produced by implanting ions at low doses into a wafer substrate up to a pre-amorphization level of the surface crystalline lattice. As a low dose of heavy ions is sufficient for producing the distorted surface region, the test wafers are produced at low costs. Additionally, a method of reworking test wafers that have been used in an RTA monitoring method is presented. By reworking the test wafers and preparing for the next RTA-monitoring the wafer costs can be efficiently reduced.
Abstract:
A method is disclosed in which a lightly doped region in a semiconductor layer is obtained by diffusing dopant atoms of a first and second type into the underlying semiconductor layer. Preferably, the method is applied to the formation of lightly doped source and drain regions in a field effect transistor so as to obtain a required gradual dopant concentration transition from the general region to the drain and source regions for avoiding the hot carrier effect. Advantageously, a diffusion of the dopant atoms is initiated during an oxidizing step in which the thickness of the gate insulation layer is increased at the edge portions thereof.
Abstract:
A method of forming a field effect transistor comprises providing a substrate comprising a biaxially strained layer of a semiconductor material. A gate electrode is formed on the biaxially strained layer of semiconductor material. A raised source region and a raised drain region are formed adjacent the gate electrode. Ions of a dopant material are implanted into the raised source region and the raised drain region to form an extended source region and an extended drain region. Moreover, in methods of forming a field effect transistor according to embodiments of the present invention, a gate electrode can be formed in a recess of a layer of semiconductor material. Thus, a field effect transistor wherein a source side channel contact region and a drain side channel contact region located adjacent a channel region are subject to biaxial strain can be obtained.
Abstract:
When incorporating a strain-inducing semiconductor alloy in one type of sophisticated transistors, the removal of sacrificial cap materials, such as a spacer layer, sacrificial spacer elements and dielectric cap materials, may be accomplished by using, at least in a first phase of the removal process, an efficient etch stop liner material, which may thus reduce the material loss in the drain and source extension regions that are formed prior to the deposition of the strain-inducing semiconductor material. Moreover, the drain and source extension regions of the other type of transistor may be formed with superior process uniformity due to a reduced material erosion of the corresponding spacer elements.
Abstract:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
Abstract:
By forming a stressed dielectric layer on different transistors and subsequently relaxing a portion thereof, the overall process efficiency in an approach for creating strain in channel regions of transistors by stressed overlayers may be enhanced while nevertheless transistor performance gain may be obtained for each type of transistor, since a highly stressed material positioned above the previously relaxed portion may also efficiently affect the underlying transistor.
Abstract:
By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.