Abstract:
A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
Abstract:
Nonpolar or semipolar laser diode technology incorporating etched facet mirror formation and conventional optical coating layer techniques for reflectivity modification to enable a method for ultra-high catastrophic optical mirror damage thresholds for high power laser diodes are disclosed.
Abstract:
Laser devices formed on a semipolar surface region of a gallium and nitrogen containing material are disclosed. The laser devices have a laser stripe configured to emit a laser beam having a cross-polarized emission state.
Abstract:
LED lamp systems having improved light quality are disclosed. The lamps emit more than 500 lm and more than 2% of the power in the spectral power distribution is emitted within a wavelength range from about 390 nm to about 430 nm.
Abstract:
An illumination source includes a heat sink with an inner core region and an outer core region having structures to dissipate heat from the inner core region. An LED assembly is pressed into a thermally-conductive compound disposed between the LED assembly and the inner core region. A retaining clamp is used to mechanically press the LED assembly into the thermally-conductive compound.
Abstract:
Techniques for manufacturing optical devices are disclosed. More particularly, light emitting diodes and in particular to ohmic contacts for light emitting diodes are disclosed.
Abstract:
The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well.
Abstract:
An illumination source includes a heat sink with an inner core region and an outer core region having structures to dissipate heat from the inner core region. An LED assembly is pressed into a thermally-conductive compound disposed between the LED assembly and the inner core region. A retaining clamp is used to mechanically press the LED assembly into the thermally-conductive compound.