Abstract:
LED lamp systems having improved light quality are disclosed. The lamps emit more than 500 lm and more than 2% of the power in the spectral power distribution is emitted within a wavelength range from about 390 nm to about 430 nm.
Abstract:
A method of improving high-current density efficiency of an LED, said method comprising: (a) preparing a series of LEDs having decreasing defect densities, wherein each LED of said series has a peak IQE of at least 50%, and wherein each LED of said series has the same epitaxial structure; (b) determining an increase in IQEs at high-current density between at least two LEDs of said series; (c) preparing at least an additional LED of said series by reducing defect density relative to the previously obtained lowest defect density; and (d) reiterating steps (b) and (c) until said increase is at least 3% between two LEDs of said series having a decrease X in defect densities.
Abstract:
Small LED sources with high brightness and high efficiency apparatus including the small LED sources and methods of using the small LED sources are disclosed.
Abstract:
Accessories for LED lamp systems and methods of attaching accessories to illumination sources (e.g., LED lamps) are disclosed. A beam shaping accessories mechanically affixed to the LED lamp. The lens is designed to adapt to a first fixture that is mechanically attached to the lens. Accessories are designed to have a second fixture for mating to the first fixture such that the first fixture and the second fixture are configured to produce a retaining force between the first accessory and the lens. The retaining force is a mechanical force that is accomplished by mechanical mating of mechanical fixtures, or the retaining force is a magnetic force and is accomplished by magnetic fixtures configured to have attracting magnetic forces. In some embodiments, the accessory is treated to modulate an emanated light pattern (e.g., a rectangular, or square, or oval, or circular or diffused emanated light pattern). A USB connector is also provided.
Abstract:
A light emitting diode device has a bulk gallium and nitrogen containing substrate with an active region. The device has a lateral dimension and a thick vertical dimension such that the geometric aspect ratio forms a volumetric diode that delivers a nearly uniform current density across the range of the lateral dimension.
Abstract:
Accessories for LED lamp systems and methods of attaching accessories to illumination sources (e.g., LED lamps) are disclosed. A beam shaping accessories mechanically affixed to the LED lamp. The lens is designed to adapt to a first fixture that is mechanically attached to the lens. Accessories are designed to have a second fixture for mating to the first fixture such that the first fixture and the second fixture are configured to produce a retaining force between the first accessory and the lens. The retaining force is a mechanical force that is accomplished by mechanical mating of mechanical fixtures, or the retaining force is a magnetic force and is accomplished by magnetic fixtures configured to have attracting magnetic forces. In some embodiments, the accessory is treated to modulate an emanated light pattern (e.g., a rectangular, or square, or oval, or circular or diffused emanated light pattern). A USB connector is also provided.
Abstract:
A method of forming a HI-Nitride based device comprising: (a) depositing first layers by MOCVD on a substrate, wherein the first layers comprise device layers of III-Nitride material; and (b) depositing epitaxial second layers over the first layers by at least one of sputtering, plasma deposition, pulsed laser deposition, or liquid phase epitaxy, wherein the second layers comprise III-Nitride material and define at least partially a tunnel junction.
Abstract:
Small LED sources with high brightness and high efficiency apparatus including the small LED sources and methods of using the small LED sources are disclosed.
Abstract:
A light-emitting diode (LED) for emitting emitted light having a particular wavelength, said LED comprising: (a) at least one n-doped layer; (b) at least one p-doped layer; (c) an active region comprising at least one layer of light-emitting material disposed between said at least one n-doped layer and said at least one p-doped layer, said active region having an average refractive index, calculated by averaging the LED's refractive index across the thickness of the active region; and (d) at least one low refractive index layer disposed within said particular wavelength of said active region, said at least one low refractive index layer having a refractive index below said average refractive index and a thickness sufficient to limit light being emitted into a guided mode of said active region to no more than 10% of said emitted light.
Abstract:
High-performance light-emitting diode together with apparatus and method embodiments thereto are disclosed. The light emitting diode devices emit at a wavelength of 390 nm to 470 nm or at a wavelength of 405 nm to 430 nm. Light emitting diode devices are characterized by having a geometric relationship (e.g., aspect ratio) between a lateral dimension of the device and a vertical dimension of the device such that the geometric aspect ratio forms a volumetric light emitting diode that delivers a substantially flat current density across the device (e.g., as measured across a lateral dimension of the active region). The light emitting diode devices are characterized by having a current density in the active region of greater than about 175 Amps/cm2.
Abstract translation:公开了高性能发光二极管及其装置和方法实施例。 发光二极管器件发射波长为390nm至470nm,波长为405nm至430nm。 发光二极管器件的特征在于在器件的横向尺寸和器件的垂直尺寸之间具有几何关系(例如,纵横比),使得几何纵横比形成体积发光二极管,其传送基本平坦的电流密度 跨越设备(例如,跨过活动区域的横向尺寸测量)。 发光二极管器件的特征在于,有源区中的电流密度大于约175A / cm 2。