Abstract:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
Abstract:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
Abstract:
A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the removal of a nitride etch stop layer.
Abstract:
A metal oxide layer on a substrate is converted at least partly to a metal layer. At least part of the metal layer is covered by an oxidation resistant cover. The covered layer and underlying metal may be removed, for example, using acid.
Abstract:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer and reduced oxidation of a substrate beneath the high-k gate dielectric layer. An oxygen barrier, or capping, layer on the high-k gate dielectric layer and metal gate may prevent such oxidation during processes such as spacer formation and annealing of ion implanted regions.
Abstract:
In general, in one aspect, a method includes forming a semiconductor substrate having N-diffusion and P-diffusion regions. A gate stack is formed over the semiconductor substrate. A gate electrode hard mask is formed over the gate stack. The gate electrode hard mask is augmented around pass gate transistors with a spacer material. The gate stack is etched using the augmented gate electrode hard mask to form the gate electrodes. The gate electrodes around the pass gate have a greater length than other gate electrodes.
Abstract:
A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
Abstract:
Methods of forming a microelectronic structure are described. Embodiments of those methods may include providing a gate electrode comprising a top surface and first and second laterally opposite sidewalls, wherein a hard mask is disposed on the top surface, a source drain region disposed on opposite sides of the gate electrode, and a spacer disposed on the first and second laterally opposed sidewalls of the gate electrode, forming a silicon germanium layer on exposed portions of the top surface and the first and second laterally opposite sidewalls of the source drain region and then oxidizing a portion of the silicon germanium layer, wherein a germanium portion of the silicon germanium layer is forced down into the source drain region to convert a silicon portion of the source drain region into a silicon germanium portion of the source drain region.
Abstract:
The present invention is a semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body.
Abstract:
A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.