Abstract:
A variable resistance memory device that includes a first electrode, a second electrode, a variable resistance layer interposed between the first electrode and a second electrode. A metal oxide electrode is interposed between the first electrode and the variable resistance layer, and the metal oxide electrode does not include a nitrogen constituent.
Abstract:
A resistance variable memory device includes: a first electrode; a second electrode; a resistance variable layer interposed between the first electrode and the second electrode; and nano particles that are disposed in the resistance variable layer and have a lower dielectric constant than the resistance variable layer.
Abstract:
A ferromagnetic graphene includes at least one antidot such that the ferromagnetic graphene has ferromagnetic characteristics. A spin valve device includes a ferromagnetic graphene. The ferromagnetic graphene includes a first region, a second region, and a third region. At least one antidot is formed in each of the first region and the third region. The first region and the third region are ferromagnetic regions, whereas the second region is a non-ferromagnetic region.
Abstract:
A luminous device and a method of manufacturing the luminous device are provided. The luminous device includes a light emitting layer and first and second electrodes connected to the light emitting layer. The light emitting layer is a strained nanowire.
Abstract:
A memory system is provided includes a host processor, and a plurality of cascade connected memory cards connected to the host processor. Each of the memory cards stores a same default relative card address (RCA) prior to initialization of the memory system. The host processor is configured to sequentially access each memory card using the default RCA, and to change the default RCA to a unique RCA upon each sequential access.
Abstract:
A semiconductor memory device performing an erase operation using an erase gate and a method of manufacturing the same are provided. The memory device may include a charge trap layer storing a first charge transfer medium having a first polarity and at least one erase gate. The at least one erase gate may be formed below the charge trap layer. A second charge transfer medium, which has a second polarity opposite to the first polarity, may be stored in the at least one erase gate. During the erase operation, the second charge transfer medium migrates to the charge trap layer causing the first charge transfer medium to combine with the second charge transfer medium.
Abstract:
A system and method for forming an online social network using genome information, comprising a web server that creates a database of detailed information of members, including genome information of the member, as inputted from member terminals, and which generates a social network on the world wide web based on the genome information of the members.
Abstract:
Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.
Abstract:
Provided is a method of operating a nonvolatile memory device to perform a programming operation or an erase operation. The method includes applying a composite pulse including a direct current (DC) pulse and an AC perturbation pulse to the nonvolatile memory device to perform the programming operation or the erase operation.
Abstract:
A semiconductor memory device performing an erase operation using an erase gate and a method of manufacturing the same are provided. The memory device may include a charge trap layer storing a first charge transfer medium having a first polarity and at least one erase gate. The at least one erase gate may be formed below the charge trap layer. A second charge transfer medium, which has a second polarity opposite to the first polarity, may be stored in the at least one erase gate. During the erase operation, the second charge transfer medium migrates to the charge trap layer causing the first charge transfer medium to combine with the second charge transfer medium.