Abstract:
A method is disclosed of determining allowable antenna limits for semiconductor-on-insulator (SOI) technology. In one embodiment, the method may include: determining antenna area on a gate; determining antenna area on a source/drain; determining a total gate insulator area between gate and source/drain nets; and calculating allowable antenna area as a function of the total gate insulator area between the nets such that a larger total antenna area is allowed for larger total gate insulator area between the nets.
Abstract:
Method embodiments herein determine a connection order in which connections will be made to connect active devices to antennas within a given circuit design. The method also evaluates the possibilities that these connections to the antennas will cause charging damage in the devices that are connected to the antennas. Such possibilities are based on the connection order, the size of the antennas, and the likelihood that charges will flow from the antennas through insulators of the devices. If a significant possibility for damage exists, the method can reduce the size of the antenna.
Abstract:
A chip includes a CMOS structure having a bulk device disposed in a first region of a semiconductor substrate in conductive communication with an underlying bulk region of the substrate, the first region and the bulk region having a first crystal orientation. A SOI device is disposed in a semiconductor-on-insulator (“SOI”) layer separated from the bulk region of the substrate by a buried dielectric layer, the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor (“PFET”) and the SOI device includes an n-type field effect transistor (“NFET”) device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor in conductive communication with a gate conductor of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region. The diodes are operable to conduct a discharge current to the bulk region when either a voltage on the gate conductor or a voltage on the source or drain region of the SOI device exceeds a diode's breakdown voltage.
Abstract:
A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.
Abstract:
The present invention is a dual epi active pixel sensor cell having a p− region of dual thickness and a method of making the same. The dual epi active pixel sensor cell produces a sensor with improved noise and latch-up reduction and improved red absorption. The thin p− epi region is positioned in the logic region for improved latch-up immunity. The thick p− epi is position in the pixel region for improved red absorption.
Abstract:
A method of detecting electromagnetic radiation with an active pixel sensor photosensitive device having an extremely thin virtual pinning layer formed by inverting semiconductor material at the surface of a photosensitive region. The thin pinning layer improves blue light response. The inverted pinning layer is produced by connecting a negative potential source to a transparent conductive layer, preferably made of indium-tin-oxide positioned over most of the photosensitive region. The conductive layer is insulated from the photosensitive region by a thin insulating layer. Connection to the pinning layer is through a coupling region formed in an area not covered by the conductive and insulating layers. Red light response is improved and the depth of the photosensitive region reduced by creating a strained layer, preferably of germanium silicon, deep within the photosensitive region. The strained layer has a modified bandgap which increases the absorption rate of red light.
Abstract:
A method of producing an asymmetrical semiconductor device with ion implantation techniques and semiconductor devices constructed according to this method in which a barrier of ion absorbing material of height h is positioned beside a structure on a semiconductor surface. The barrier is located at a maximum distance d from one side of the structure, and an angled ion implant is directed at the side of the structure. The maximum distance d of the barrier from the side of the structure is equal to the height of the barrier h divided by the tangent of the angle of the ion implant so that the side of the structure is shadowed from the ion implant. A second ion implant is directed to the opposite side of the structure on the semiconductor surface, thereby forming a desired implant and producing the asymmetrical semiconductor device.
Abstract:
A circuit actively monitors and measures the amount of MOS device degradation due to, for example, the hot electron effect, and makes compensatory adjustments to device voltage levels or clock speed to maintain desired levels of functionality and performance. Monitoring can be done separately for NFET and PFET devices to selectively adjust for different degradation rates between the two. In operation, the monitor circuit compares the performance of a stressed device to a reference device, that is, an unstressed device which has not been degraded by the hot-electron effect. The monitor circuit outputs a signal indicating the amount of device degradation. This signal is used to adjust the supply voltage to that device or to the chip or otherwise compensate for the degradation. The monitor circuit can be formed on-chip or off-chip.
Abstract:
The present invention is a dual epi active pixel sensor cell having a p- region of dual thickness and a method of making the same. The dual epi active pixel sensor cell produces a sensor with improved noise and latch-up reduction and improved red absorption. The thin p- epi region is positioned in the logic region for improved latch-up immunity. The thick p- epi is positioned in the pixel region for improved red absorption.
Abstract:
An integrated circuit comprising an N+ type layer, a buffer layer arranged on the N+ type layer; a P type region formed on with the buffer layer; an insulator layer overlying the N+ type layer, a silicon layer overlying the insulator layer, an embedded RAM FET formed in the silicon layer and connected with a conductive node of a trench capacitor that extends into the N+ type layer, the N+ type layer forming a plate electrode of the trench capacitor, a first contact through the silicon layer and the insulating layer and electrically connecting to the N+ type layer, a first logic RAM FET formed in the silicon layer above the P type region, the P type region functional as a P-type back gate of the first logic RAM FET, and a second contact through the silicon layer and the insulating layer and electrically connecting to the P type region.