Abstract:
The thermosetting die bonding film of the invention is a thermosetting die bonding film used to produce a semiconductor device, which contains, as main components, 5 to 15% by weight of a thermoplastic resin component and 45 to 55% by weight of a thermosetting resin component, and has a melt viscosity of 400 Pa·s or more and 2500 Pa·s or less at 100° C. before the film is thermally set.
Abstract:
A cleaning sheet including a cleaning layer which has a microasperity shape having an arithmetic average roughness Ra of 0.05 μm or less and a maximum height Rz of 1.0 μm or less. Preferably, a substantial surface area of the cleaning layer per a flat surface of 1 mm2 is 150% or more of a substantial surface area of a silicon wafer mirror surface per a flat area of 1 mm2. The cleaning sheet may be provided on at least one surface of a transfer member so that the transfer member has a cleaning function. When the cleaning sheet or the transfer member having a cleaning function is transferred in a substrate processing apparatus in place of a substrate to be processed therein, the cleaning sheet contacts and cleans a site of the substrate processing apparatus.
Abstract:
The present invention provides a film for a semiconductor device that is capable of suppressing the generation of a transfer mark on an adhesive film when a film for a semiconductor device, in which an adhesive film with a dicing sheet obtained by laminating an adhesive film onto a dicing film is laminated onto a cover film leaving a prescribed spacing, is wound up into a roll. It is a film for a semiconductor device in which an adhesive film with a dicing sheet obtained by laminating an adhesive film onto a dicing film is laminated onto a cover film leaving a prescribed spacing, wherein a ratio Ea/Eb of the tensile storage modulus Ea of the adhesive film at 23° C. to the tensile storage modulus Eb of the cover film at 23° C. is in a range of 0.001 to 50.
Abstract:
A cleaning sheet for cleaning foreign matters away from the interior of the substrate processing equipment is provided. The cleaning sheet includes a cleaning layer having substantially no tackiness and having a tensile modulus of not lower than 0.98 N/mm2 as determined according to JIS K7127. Alternatively, the cleaning sheet includes a cleaning layer having a Vickers hardness of not lower than 10 MPa.
Abstract translation:提供了一种用于清除离开基板处理设备内部的异物的清洁片。 清洁片包括基本上没有粘性并且根据JIS K7127测定的拉伸模量不低于0.98N / mm 2的清洁层。 或者,清洁片包括维氏硬度不低于10MPa的清洁层。
Abstract:
A dicing die-bonding film in which the adhesive properties during the dicing step and the peeling properties during the pickup step are controlled so that both become good, and a production method thereof, are provided. The dicing die-bonding film in the present invention is a dicing die-bonding film having a pressure-sensitive adhesive layer on a base material and a die bond layer on the pressure-sensitive adhesive layer, in which the arithmetic mean roughness X (μm) on the pressure-sensitive adhesive layer side in the die bond layer is 0.015 μm to 1 μm, the arithmetic mean roughness Y (μm) on the die bond layer side in the pressure-sensitive adhesive layer is 0.03 μm to 1 μm, and the absolute value of the difference of the X and Y is 0.015 or more.
Abstract:
A first analog differential signal V1p and a first analog differential signal V1n are applied to the respectively commonly-connected bases of two sets of differential pairs which are constructed of transistors Q1 to Q4. A commonly-connected collector of Q1 and Q4 is used as an output terminal Vop, whereas a commonly-connected collector of Q2 and Q3 is used as another output terminal Von. Collectors of Q11 and Q12 are connected to the respective commonly-connected emitters of these differential pairs. Parallel resonant circuits are connected to the respective emitters of Q11 and Q12, and the emitter-to-emitter path is connected by R15. Input circuits 101 and 102 are connected to the respective bases of Q11 and Q12. A second analog differential signal V2p and a second analog differential signal V2n are inputted to these input circuits 101 and 102. The transistors Q12 and Q14 of the input circuits 101 and 102 constitute current mirror circuits in connection with Q11 and Q13. A total number of longitudinally-stacked stages of the transistors can be made of two stages, and also the analog multiplying circuit can be operated under low power supply voltage.