Abstract:
The present invention relates to a processing method of data stream using Border Monitoring Query, and more particularly a monitoring method and a system for data streams which are a large volume of data and continuously generated such as financial ticker, GPS data or a ubiquitous sensor network (USN).The objectives of the present invention are to process a large number of BMQs over data streams in high-performance and scalable manner. For this purpose, the invention presents BMQ-Index, a scalable and high performance data stream monitoring framework. The main idea of BMQ-Index is shared and incremental processing. For shared processing, BMQ-Index adopts a query indexing approach, thereby achieving a high level of scalability. Once BMQ-Index is built on registered queries, only relevant queries are quickly searched for upon an incoming data. For incremental processing, BMQ-Index employs an incremental access method, i.e., an index structure to store delta query information and an incremental search algorithm. Thus, successive BMQ evaluations are greatly accelerated.
Abstract:
Methods and systems of processing a data stream are disclosed. A developer may develop a service only by programming a Service Unit (SU) including a service logic (SL) and including a Service Unit Description Language (SUDL) file, so that the developer may not need to program complicated stream processing code, such as stream source connection code, network input/output (I/O) code, and buffering code. In addition, the stream source connected dynamically to the service and a service execution mode (such as push and pull modes) may be converted by simply changing setting files based on the service model. The system includes modules for managing and processing the stream in reality, such as stream source connection modules, network I/O processing modules, and stream buffering modules, the modules operating the developed program through the service model.
Abstract:
A light emitting diode package which is superior in heat radiation and easily manufacturable. In the light emitting diode package, an Al substrate has a reflective cup formed thereon. At least one light emitting diode chip is disposed on a bottom surface of the reflective cup. An Al anodized film extends through the Al substrate to divide the bottom surface of the reflective cup into a plurality of substrate electrodes. Here, at least one of the substrate electrodes is surrounded by the Al anodized film. Also, the substrate electrodes are connected to a light emitting diode chip, respectively.
Abstract:
An anodized metal substrate module superior in heat radiation properties and reduced in manufacturing costs. A metal plate is provided. An anodized film is formed on the metal plate. A heat generating device is mounted on the metal plate. Also, a conductive line is formed on the anodized film.
Abstract:
Disclosed herein is a power module package, including: a first substrate having first semiconductor chips mounted thereon; and a second substrate having second semiconductor chips mounted thereon, the second substrate being coupled with the first substrate such that a side surface in a thickness direction thereof is disposed on an upper surface of the first substrate.
Abstract:
Disclosed herein is a double side cooling power semiconductor module including: a first cooler having a concave part formed in one surface thereof in a thickness direction; a first semiconductor chip mounted on the concave part of the first cooler; a second cooler having one surface and the other surface and formed on one surface of the first cooler so that one surface thereof contacts the first semiconductor chip; a circuit board formed on the other surface of the second cooler; a second semiconductor chip mounted on the circuit board; and a flexible substrate having a circuit layer electrically connecting the first and second semiconductor chips to each other.
Abstract:
Disclosed herein is a power module package including: a first substrate; a second substrate having a pad for connection to the first substrate formed on one side or both sides of one surface thereof and having external connection terminals for connection to the outside formed on the other surface thereof; and a lead frame having one end bonded to the first substrate and the other end bonded to the pad of the second substrate to thereby vertically connect the first and second substrates to each other.
Abstract:
Disclosed herein is a power module package including: a first substrate having one surface and the other surface; a second substrate contacting one side of one surface of the first substrate; and a first lead frame contacting the other side of one surface of the first substrate. The power module package further includes: a first metal layer formed on one side of one surface of the first substrate; a first bonding layer formed on the first metal layer and contacting a lower surface of the second substrate; a second metal layer formed on the other side of one surface of the first substrate; and a second bonding layer formed on the second metal layer and contacting a lower surface of the first lead frame.
Abstract:
The present invention relates to a printed circuit board. A heat radiation coating material is applied to a portion of a circuit layer formed on an outermost portion of the printed circuit board, thereby making it possible to improve heat radiation performance of the printed circuit board. The heat radiation coating material also serves as a solder resist, thereby making it possible to insulate and protect the printed circuit board without a separate solder resist.
Abstract:
Disclosed herein is a double side cooling power semiconductor module including: a first cooler having a concave part formed in one surface thereof in a thickness direction; a first semiconductor chip mounted on the concave part of the first cooler; a second cooler having one surface and the other surface and formed on one surface of the first cooler so that one surface thereof contacts the first semiconductor chip; a circuit board formed on the other surface of the second cooler; a second semiconductor chip mounted on the circuit board; and a flexible substrate having a circuit layer electrically connecting the first and second semiconductor chips to each other.