Abstract:
At least some embodiments of the present disclosure relate to a substrate for packaging a semiconductor device. The substrate includes a first dielectric layer having a first surface, a first patterned conductive layer adjacent to the first surface of the first dielectric layer, and a conductive post. The first patterned conductive layer includes a first conductive pad and a second conductive pad. The conductive post is disposed on the first conductive pad. The conductive post includes a first portion and a second portion. The first portion and the second portion of the conductive post are exposed by the first dielectric layer. The first portion of the conductive post has a first width corresponding to a top line width of the first portion and the second portion of the conductive post has a width. The width of the second portion of the conductive post is greater than the first width of the first portion of the conductive post.
Abstract:
A package substrate includes a dielectric layer, a conductive via disposed in the dielectric layer, and a conductive pattern layer exposed from a first surface of the dielectric layer. The conductive pattern layer includes traces and a via land, the via land extends into the conductive via, and a circumferential portion of the via land is encompassed by the conductive via. A method of making a package substrate includes forming a conductive pattern layer including traces and a via land, providing a dielectric layer to cover the conductive pattern layer, and forming a via hole. Forming the via hole is performed by removing a portion of the dielectric layer and exposing a bottom surface of the via land and at least a portion of a side surface of the via land. A conductive material is applied into the via hole to form a conductive via covering the via land.
Abstract:
An embedded component package structure includes a substrate. A first conductive component extends from a first surface of the substrate to a second surface of the substrate, a first conductive layer is disposed on the first surface of the substrate, and a second conductive layer is disposed on the second surface of the substrate and is electrically connected to the first conductive layer by the first conductive component. A die is disposed in a through hole in the substrate. A back surface of the die is exposed from the second surface of the substrate. A first dielectric layer covers an active surface of the die and the first surface of the substrate. A third conductive layer is disposed on the first dielectric layer and is electrically connected to the die by a second conductive component. A first metal layer is disposed directly on the back surface of the die.
Abstract:
A semiconductor substrate and a manufacturing method thereof are provided. The semiconductor substrate includes a dielectric layer, a circuit layer, a first protection layer and a plurality of conductive posts. The dielectric layer has a first surface and a second surface that are opposite to each other. The circuit layer is embedded in the dielectric layer and is exposed from the first surface. The first protection layer covers a portion of the first circuit layer and defines a plurality of holes that expose a remaining portion of the first circuit layer. The conductive posts are formed in the holes.
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor module and a method for manufacturing the same. The semiconductor substrate includes a first dielectric structure, a second dielectric structure, a first patterned conductive layer and a second patterned conductive layer. The first dielectric structure has a first surface and a second surface opposite the first surface. The second dielectric structure has a third surface and a fourth surface opposite the third surface, where the fourth surface is adjacent to the first surface. The second dielectric structure defines a through hole extending from the third surface to the fourth surface. A cavity is defined by the through hole and the first dielectric structure. The first patterned conductive layer is disposed on the first surface of the first dielectric structure. The second patterned conductive layer is disposed on the second surface of the first dielectric structure.
Abstract:
A semiconductor device package includes a substrate and an antenna module. The substrate has a first surface and a second surface opposite to the first surface. The antenna module is disposed on the first surface of the substrate with a gap. The antenna module has a support and an antenna layer. The support has a first surface facing away from the substrate and a second surface facing the substrate. The antenna layer is disposed on the first surface of the support. The antenna layer has a first antenna pattern and a first dielectric layer.
Abstract:
A substrate includes a first dielectric layer having a first surface and a second dielectric layer having a first surface disposed adjacent to the first surface of the first dielectric layer. The substrate further includes a first conductive via disposed in the first dielectric layer and having a first end adjacent to the first surface of the first dielectric layer and a second end opposite the first end. The substrate further includes a second conductive via disposed in the second dielectric layer and having a first end adjacent to the first surface of the second dielectric layer. A width of the first end of the first conductive via is smaller than a width of the second end of the first conductive via, and a width of the first end of the second conductive via is smaller than the width of the first end of the first conductive via.
Abstract:
A semiconductor device, a semiconductor device package, and a method of manufacturing a semiconductor device package are provided. The semiconductor device includes an electronic component and a first protection layer. The electronic component includes a first conductive pad protruded out of a first surface of the electronic component. The first protection layer covers an external surface of the first conductive pad. The first surface of the electronic component is exposed from the first protection layer.
Abstract:
A semiconductor device package includes a carrier, an electronic component, a connection element and an encapsulant. The electronic component is disposed on a surface of the carrier. The connection element is disposed on the surface and adjacent to an edge of the carrier. The encapsulant is disposed on the surface of the carrier. A portion of the connection element is exposed from an upper surface and an edge of the encapsulant.
Abstract:
A semiconductor device package includes a first circuit layer, a second circuit layer, a first semiconductor die and a second semiconductor die. The first circuit layer includes a first surface and a second surface opposite to the first surface. The second circuit layer is disposed on the first surface of the first circuit layer. The first semiconductor die is disposed on the first circuit layer and the second circuit layer, and electrically connected to the first circuit layer and the second circuit layer. The second semiconductor die is disposed on the second circuit layer, and electrically connected to the second circuit layer.