LATERAL/VERTICAL TRANSISTOR STRUCTURES AND PROCESS OF MAKING AND USING SAME

    公开(公告)号:US20200078785A1

    公开(公告)日:2020-03-12

    申请号:US16509414

    申请日:2019-07-11

    Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.

    Lateral/vertical transistor structures and process of making and using same

    公开(公告)号:US10350594B2

    公开(公告)日:2019-07-16

    申请号:US15912164

    申请日:2018-03-05

    Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.

    Microfluidic Devices Having Isolation Pens and Methods of Testing Biological Micro-Objects with Same

    公开(公告)号:US20190134630A1

    公开(公告)日:2019-05-09

    申请号:US15989549

    申请日:2018-05-25

    Abstract: A microfluidic device can comprise at least one swept region that is fluidically connected to unswept regions. The fluidic connections between the swept region and the unswept regions can enable diffusion but substantially no flow of media between the swept region and the unswept regions. The capability of biological micro-objects to produce an analyte of interest can be assayed in such a microfluidic device. Biological micro-objects in sample material loaded into a microfluidic device can be selected for particular characteristics and disposed into unswept regions. The sample material can then be flowed out of the swept region and an assay material flowed into the swept region. Flows of medium in the swept region do not substantially affect the biological micro-objects in the unswept regions, but any analyte of interest produced by a biological micro-object can diffuse from an unswept region into the swept region, where the analyte can react with the assay material to produce a localized detectable reaction. Any such detected reactions can be analyzed to determine which, if any, of the biological micro-objects are producers of the analyte of interest.

    Lateral/vertical transistor structures and process of making and using same

    公开(公告)号:US11596941B2

    公开(公告)日:2023-03-07

    申请号:US17063704

    申请日:2020-10-05

    Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.

Patent Agency Ranking