Abstract:
A printed circuit board includes an insulating layer, a copper layer formed on the insulating layer and a reinforcing layer formed on the copper layer at opposite sides of the given portion. The copper layer includes a plurality of electrical traces at a given portion thereof. A thickness of the reinforcing layer increases in a direction away from the given portion. A method for manufacturing the printed circuit board is also provided in this disclosure.
Abstract:
A method of forming electrical traces includes the steps of: providing a substrate; printing an ink pattern using a silver containing ink on the substrate, the ink comprising an aqueous carrier medium having dissolved therein a water-soluble light sensitive silver salt; irradiating the ink pattern to reduce silver salt therein to silver particles thereby forming an underlayer; and electroless plating a metal overcoat layer on the underlayer thereby obtaining electrical traces.
Abstract:
A method for assembling an electronic component on a printed circuit board includes following steps. Firstly, a printed circuit board substrate including a central main portion and a peripheral unwanted portion is provided. Secondly, electrically conductive patterns and reinforcing patterns are formed on the main portion and the unwanted portion respectively. Thirdly, an electronic component is mounted on the main portion and electrically connected with the electrically conductive patterns. Fifthly, the unwanted portion is removed.
Abstract:
A printed circuit board includes a substrate having a surface, a circuit layer having a plurality of electrical traces formed on the surface, and an electrically conductive metal layer formed on the circuit layer. The circuit layer is comprised of a composite of carbon nano-tubes and metallic nano-particles.
Abstract:
A method for manufacturing a rigid-flexible printed circuit boards includes following steps. Firstly, a flexible substrate is provided. Secondly, at least one slit is defined in the flexible substrate. Thirdly, a rigid substrate having a structure corresponding to the flexible substrate is provided. Fourthly, the flexible substrate is laminated to the rigid substrate to obtain a laminated substrate. Fifthly, part of the rigid substrate is removed. Sixthly, the laminated substrate is cut along an imaginary boundary line to remove waste portion of the laminated substrate. Thus, a rigid-flexible printed circuit board is obtained.
Abstract:
The present inventions relates to a method for manufacturing a multilayer FPCB having different number of layers in different areas. The method includes the steps of: providing a binder layer; removing a portion of the binder layer thereby defining an opening in the binder layer; forming a multilayer FPCB which having a first copper clad laminate structure and a second copper clad laminate structure disposed on two opposite sides of the binder layer respectively using the binder layer; cutting the first copper clad laminate structure; cutting the multilayer FPCB in manner that a portion of first copper clad laminate structure that is exposed to the opening is separated from the first copper clad structure thereby obtain a multilayer FPCB having different number of layers in different areas.
Abstract:
A printed circuit board substrate includes a metal-clad substrate and a number of N spaced circuit substrates arranged on the metal-clad substrate along an imaginary circle, and N is a natural number greater than 2. The circuit substrates are equiangularly arranged about the center of the circle, and each of the circuit substrates is oriented 360/N degrees with respect to a neighboring printed circuit board.
Abstract:
A circuit substrate includes an electrically conductive layer having electrically conductive patterns formed therein, an insulating layer having a through hole, and a composite layer positioned between the electrically conductive layer and the insulating layer. The through hole is configured for having an electronic component mounted thereon. The composite layer includes a polymer matrix and at least one carbon nanotube bundle embedded in the polymer matrix. One end of the at least one carbon nanotube bundle contacts the electrically conductive patterns, and the other is exposed in the through hole of the insulation layer.
Abstract:
An exemplary method for forming electrical traces on a substrate includes flowing steps. Firstly, a circuit pattern is formed on the substrate by printing a silver ions-containing ink. The ink comprises an aqueous carrier medium, and a silver halide emulsion soluble in the aqueous carrier medium. Secondly, an irradiation ray irradiates the circuit pattern to reduce the silver ions into silver to form a silver particle circuit pattern comprised of silver particles. Thirdly, a metal overcoat layer is electroless-plated on the silver particle circuit pattern thereby obtaining electrical traces.
Abstract:
A method of forming a circuit on a circuit board includes the following steps. Firstly, a surface of an insulating substrate is hydrophilically treated. Secondly, a first circuit layer having a number of electrical traces is formed on the hydrophilically treated surface, the first circuit layer is comprised of a soluble palladium salt. Thirdly, the soluble palladium salt of the first circuit layer is reduced into metallic palladium, thereby obtaining a second circuit layer comprised of metallic palladium. Lastly, an electrically conductive layer is formed on the second circuit layer.