Abstract:
A system includes an aftertreatment system heater of an exhaust aftertreatment system coupled to an engine A controller coupled to the aftertreatment system heater is configured to determine a condition of an exhaust gas from an engine and compare the condition to a predefined threshold. If the condition of the exhaust gas does not meet the predefined threshold, the controller is configured to determine whether an engine operating condition is met for activating a cylinder deactivation operating mode for the engine. If the engine operating condition is met, the controller is configured to operate the engine in the cylinder deactivation operating mode by deactivating a cylinder of a plurality of cylinders. If the engine operating condition is not met, the controller is configured to activate the aftertreatment system heater to heat the exhaust gas.
Abstract:
A system is provided for performing an automated range estimation process for an electric vehicle using a processor. Included in the system is a range estimator configured to estimate an initial value of an energy required to travel a unit distance for the electric vehicle. The range estimator generates a first estimation model based on a correlation between a maximum all-electric-range and the energy required to travel a unit distance. Then, the first estimation model is adjusted based on one or more predetermined driving conditions. The maximum all-electric-range of the electric vehicle is updated based on the adjusted first estimation model. An estimated range of the electric vehicle is calculated based on the updated maximum all-electric-range of the electric vehicle and a fraction of total energy capability remaining in the electric vehicle. The estimated range of the electric vehicle is outputted and is used to control the electric vehicle.
Abstract:
An apparatus includes an engine module, an in-cylinder content module, and an engine out NOx module. The engine module is structured to interpret engine in-cylinder data regarding an operating condition within a cylinder of an engine, wherein the engine in-cylinder data includes an engine torque, an engine speed, a rail pressure, and a start-of-injection. The in-cylinder content module is structured to interpret at least one additional in-cylinder data point regarding the operating condition within the cylinder of the engine. The engine out NOx module is structured to determine an engine out NOx amount responsive to the engine in-cylinder data and the at least one additional in-cylinder data point.
Abstract:
An apparatus includes an engine module, an in-cylinder content module, and an engine out NOx module. The engine module is structured to interpret engine in-cylinder data regarding an operating condition within a cylinder of an engine, wherein the engine in-cylinder data includes an engine torque, an engine speed, a rail pressure, and a start-of-injection. The in-cylinder content module is structured to interpret at least one additional in-cylinder data point regarding the operating condition within the cylinder of the engine. The engine out NOx module is structured to determine an engine out NOx amount responsive to the engine in-cylinder data and the at least one additional in-cylinder data point.
Abstract:
One exemplary embodiment is a system comprising a multi-fuel engine structured to selectably combust varying proportions of a first type of fuel and a second type of fuel, and an electronic control system structured to control the provision of at least one of the first type of fuel and the second type of fuel to the engine using a multi-factor cost optimization. The multi-factor cost optimization may account for a plurality of factors including one or more environment factors, location factors, mission factors, warranty factors, operator-specified factors and/or fleet-specified factors.
Abstract:
An engine starting system and technique include selecting a target engine speed profile from a plurality of engine speed profiles based on operator inputs and operating parameters of the vehicle. A feedback control strategy is used to substantially conform the engine speed with the target speed profile during starting until a target speed is reached in which fueling is initiated to start the engine.