Abstract:
A poly opening polish process includes the following steps. A semi-finished semiconductor component is provided. The semi-finished semiconductor component includes a substrate, a gate disposed on the substrate, and a dielectric layer disposed on the substrate and covering the gate. A first polishing process is applied onto the dielectric layer. A second polishing process is applied to the gate. The second polishing process utilizes a wetting solution including a water soluble polymer surfactant, an alkaline compound and water. The poly opening polish process can effectively remove an oxide residue formed in the chemical mechanical polish, thereby improving the performance of the integrated circuit and reducing the production cost of the integrated circuit.
Abstract:
A chemical mechanical polishing (CMP) process includes steps of providing a substrate, performing a first polishing step to the substrate with an acidic slurry, and performing a second polishing step to the substrate with a basic slurry after the first polishing step.
Abstract:
Semiconductor devices and methods for fabricating the same. The devices includes a substrate, a first etch stop layer, a dielectric layer, an opening, and an anti-diffusion layer. The first etch stop layer overlies the substrate. The dielectric layer overlies the first etch stop layer. The opening extends through the dielectric layer and the first etch stop layer, and exposes parts of the substrate. The anti-diffusion layer overlies at least sidewalls of the opening, preventing contamination molecule diffusion from at least the first etch stop layer, wherein the anti-diffusion layer is respectively denser than the first etch stop layer and the dielectric layer.
Abstract:
A method of cleaning and drying a semiconductor wafer including inserting a semiconductor wafer into a chamber of a cleaning tool, spinning the semiconductor wafer in a range of about 300 revolutions per minute to about 1600 revolutions per minute, and simultaneously spraying the semiconductor wafer with de-ionized water and a mixture of isopropyl alcohol and nitrogen.
Abstract:
A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
Abstract:
The present invention discloses a cooling system for an electronic rack, comprising: an electronic rack comprising at least one side wall; at least one electronic chassis comprising a top wall and at least one side wall and disposed inside the electronic rack for housing at least one modular electronics equipment comprising a plurality of electronic components and at least one stationary thermal interface arranged above the plurality of electronic components; a first detachable thermal interface arranged between the top wall of the at least one electronic chassis and the at least one modular electronic equipment; and at least one second detachable thermal interface arranged between the at least one side wall of the electronic rack and the at least one side wall of the at least one electronic chassis.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the substrate of the resistor region; forming a tank in the STI of the resistor region; and forming a resistor in the tank and on the surface of the STI adjacent to two sides of the tank.
Abstract:
A method of cleaning and drying a semiconductor wafer including inserting a semiconductor wafer into a chamber of a cleaning tool, spinning the semiconductor wafer in a range of about 300 revolutions per minute to about 1600 revolutions per minute, and simultaneously spraying the semiconductor wafer with de-ionized water and a mixture of isopropyl alcohol and nitrogen.
Abstract:
A poly opening polish process includes the following steps. A semi-finished semiconductor component is provided. The semi-finished semiconductor component includes a substrate, a gate disposed on the substrate, and a dielectric layer disposed on the substrate and covering the gate. A first polishing process is applied onto the dielectric layer. A second polishing process is applied to the gate. The second polishing process utilizes a wetting solution including a water soluble polymer surfactant, an alkaline compound and water. The poly opening polish process can effectively remove an oxide residue formed in the chemical mechanical polish, thereby improving the performance of the integrated circuit and reducing the production cost of the integrated circuit.
Abstract:
The present disclosure provides an integrated circuit design method. In an example, a method includes receiving an integrated circuit design layout that includes an active region feature, a contact feature, and an isolation feature, wherein a portion of the active region feature is disposed between the contact feature and the isolation feature; determining whether a thickness of the portion of the active region feature disposed between the contact feature and the isolation feature is less than a threshold value; and modifying the integrated circuit design layout if the thickness is less than the threshold value, wherein the modifying includes adding a supplementary active region feature adjacent to the portion of the active region feature disposed between the contact feature and the isolation feature.