Magnetic spin shift register memory
    22.
    发明授权
    Magnetic spin shift register memory 有权
    磁自旋移位寄存器

    公开(公告)号:US08518718B2

    公开(公告)日:2013-08-27

    申请号:US13613313

    申请日:2012-09-13

    IPC分类号: H01L21/00

    摘要: A method for forming a memory device includes forming a cavity having an inner surface with an undulating profile in a substrate, depositing a ferromagnetic material in the cavity, forming a reading element on the substrate proximate to a portion of the ferromagnetic material, and forming a writing element on the substrate proximate to a second portion of the ferromagnetic material.

    摘要翻译: 一种用于形成存储器件的方法包括:形成具有在衬底中具有波状轮廓的内表面的空腔,在所述空腔中沉积铁磁材料,在所述衬底上形成接近所述铁磁材料的一部分的读取元件,以及形成 在基板上的写入元件靠近铁磁材料的第二部分。

    Method of fabricating a shiftable magnetic shift register
    25.
    发明授权
    Method of fabricating a shiftable magnetic shift register 有权
    制造可移动磁移位寄存器的方法

    公开(公告)号:US07108797B2

    公开(公告)日:2006-09-19

    申请号:US10787738

    申请日:2004-02-25

    IPC分类号: G11B5/127 B44C1/22 H01L21/00

    摘要: A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. Vias of approximately 10 microns tall with a cross-section on the order of 100 nm×100 nm are etched in this multilayered stack of alternating layers. Vias may be etched form smooth or notched walls. Vias are filled by electroplating layers of alternating types of ferromagnetic or ferrimagnetic metals. The alternating ferromagnetic or ferrimagnetic layers are comprised of magnetic materials with different magnetization or magnetic exchange or magnetic anisotropies. These different magnetic characteristics allow the pinning of magnetic domain walls at the boundaries between these layers. Alternatively, vias are filled with a homogeneous ferromagnetic material. Magnetic domain walls are formed by the discontinuity in the ferromagnetic or ferromagnetic material that occurs at the notches or at the protuberances along the via walls.

    摘要翻译: 用于磁移位寄存器存储器系统的磁数据磁道可以通过形成交替的电介质层和/或硅层的多层叠层来制造。 在该多层交替层中蚀刻约10微米高的具有100nm×100nm量级的横截面的通孔。 通孔可能被蚀刻形成平滑或缺口的墙壁。 通孔由交替类型的铁磁或亚铁磁性金属的电镀层填充。 交替的铁磁或亚铁磁层由具有不同磁化或磁交换或磁各向异性的磁性材料组成。 这些不同的磁特性允许磁畴壁在这些层之间的边界处的钉扎。 或者,通孔用均匀的铁磁材料填充。 磁畴壁由铁氧体或铁磁材料中的不连续部分形成,这些不规则发生在沿着通孔壁的凹口或凸起处。

    Shiftable magnetic shift register and method of using the same
    26.
    发明授权
    Shiftable magnetic shift register and method of using the same 有权
    可移动磁移位寄存器及其使用方法

    公开(公告)号:US06834005B1

    公开(公告)日:2004-12-21

    申请号:US10458554

    申请日:2003-06-10

    IPC分类号: G11C1902

    摘要: A magnetic shift register uses the inherent, natural properties of domain walls in magnetic materials to store data. The shift register uses spin electronics without changing the physical nature of its constituent materials. The shift register comprises a fine track or strip of magnetic materials. Information is stored as domain walls in the track. An electric current is applied to the track to move the magnetic moments along the track past a reading or writing device. In a magnetic material with domain walls, a current passed across the domain wall moves the domain wall in the direction of the current flow. As the current passes through a domain, it becomes “spin polarized”. When this spin polarized current passes through the next domain and across a domain wall, it develops a circle of spin torque. This spin torque moves the domain wall.

    摘要翻译: 磁性移位寄存器使用磁性材料中的畴壁的固有的自然特性来存储数据。 移位寄存器使用自旋电子器件,而不改变其构成材料的物理性质。 移位寄存器包括磁性材料的精细轨道或条带。 信息作为域墙存储在轨道中。 将电流施加到轨道上以沿着轨迹移动通过读取或写入装置的磁矩。 在具有畴壁的磁性材料中,穿过畴壁的电流使畴壁沿电流方向移动。 当电流通过一个域时,它变成“自旋极化”。 当这种自旋极化电流通过下一个畴并横跨畴壁时,它产生一个自旋转矩圈。 该旋转扭矩移动域壁。

    Multiple data layer magnetic recording data storage system with digital
magnetoresistive read sensor
    27.
    发明授权
    Multiple data layer magnetic recording data storage system with digital magnetoresistive read sensor 失效
    具有数字磁阻读取传感器的多数据层磁记录数据存储系统

    公开(公告)号:US5583727A

    公开(公告)日:1996-12-10

    申请号:US441100

    申请日:1995-05-15

    摘要: A magnetic recording data storage system uses a medium substrate with multiple data layers formed on it and a magnetoresistive (MR) read sensor that provides a direct digital output as it reads data in all the data layers simultaneously. In one disk drive embodiment, the magnetic recording disk is a conventional disk substrate with two magnetically isolated and decoupled magnetic data layers formed on it. Data is written into each of the data layers independently by appropriate selection of the coercivity of the magnetic materials used in the data layers and the strength of the write current in an inductive write head. In one embodiment for independently writing to any of the data layers, the data layers are made of magnetic materials having different coercivity vs. temperature dependencies, and the disk is heated (or not heated) prior to writing with a write field that affects only one of the data layers. The magnetic field strength from written data in each of the data layers is different from that of the other data layers so that the data can be distinguished by the MR read sensor. The preferred MR read sensor for the multiple data layer disk is a multilayer of alternating ferromagnetic layers and nonferromagnetic metal spacer layers based on the giant magnetoresistive (GMR) effect. However, in the present GMR sensor each ferromagnetic layer has its magnetic moment responsive to an external magnetic field strength that is different from the magnetic field strengths at which the magnetic moments of the other ferromagnetic layers are responsive. This allows each ferromagnetic layer in the GMR sensor to switch its magnetization direction from parallel to antiparallel, or vice versa, independently of the other ferromagnetic layers.

    摘要翻译: 磁记录数据存储系统使用其上形成有多个数据层的介质衬底和在其同时读取所有数据层中的数据时提供直接数字输出的磁阻(MR)读取传感器。 在一个磁盘驱动器实施例中,磁记录盘是在其上形成有两个磁隔离和去耦磁数据层的传统磁盘基板。 通过适当选择在数据层中使用的磁性材料的矫顽力和感应写入头中的写入电流的强度,数据被独立地写入每个数据层。 在独立写入任何数据层的一个实施例中,数据层由具有不同矫顽力与温度依赖性的磁性材料制成,并且在写入之前盘被加热(或不加热),该写入场仅影响一个 的数据层。 每个数据层中的写入数据的磁场强度与其他数据层的磁场强度不同,从而可以通过MR读取传感器区分数据。 用于多数据层盘的优选MR读取传感器是基于巨磁阻(GMR)效应的交替铁磁层和非铁磁金属间隔层的多层。 然而,在当前的GMR传感器中,每个铁磁层的磁场响应于与另一个铁磁层的磁矩响应的磁场强度不同的外部磁场强度。 这允许GMR传感器中的每个铁磁层独立于其它铁磁层将其磁化方向从平行切换到反向平行,反之亦然。

    Magnetoresistive spin valve sensor with improved pinned ferromagnetic
layer and magnetic recording system using the sensor
    28.
    发明授权
    Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor 失效
    具有改进的钉扎铁磁层的磁阻自旋阀传感器和使用该传感器的磁记录系统

    公开(公告)号:US5465185A

    公开(公告)日:1995-11-07

    申请号:US139477

    申请日:1993-10-15

    IPC分类号: G11B5/00 G11B5/012 G11B5/39

    摘要: A spin valve magnetoresistive (MR) sensor uses a multifilm laminated pinned ferromagnetic layer in place of the conventional single-layer pinned layer. The laminated pinned layer has at least two ferromagnetic films separated by an antiferromagnetically coupling film. By appropriate selection of the thickness of the antiferromagnetically coupling film, depending on the material combination selected for the ferromagnetic and antiferromagnetically coupling films, the ferromagnetic films become antiferromagnetically coupled. In the preferred embodiment, the pinned layer is formed of two films of nickel-iron (Ni--Fe) separated by a ruthenium (Ru) film having a thickness less than approximately 10 .ANG.. Since the pinned ferromagnetic films have their magnetic moments aligned antiparallel with one another, the two moments can be made to essentially cancel one another by making the two ferromagnetic films of substantially the same thickness. As a result, there is essentially no dipole field to adversely affect the free ferromagnetic layer, which improves the sensitivity of the sensor and allows higher recording density to be achieved in a magnetic recording data storage system.

    摘要翻译: 自旋阀磁阻(MR)传感器使用多层叠式钉扎铁磁层代替传统的单层固定层。 层叠的钉扎层具有至少两个由反铁磁耦合膜分离的铁磁膜。 通过适当选择反铁磁耦合膜的厚度,取决于为铁磁和反铁磁耦合膜选择的材料组合,铁磁膜变为反铁磁耦合。 在优选实施例中,被钉扎层由厚度小于约10安培的钌(Ru)膜分离的两层镍 - 铁(Ni-Fe)形成。 由于被钉扎的铁磁膜的磁矩彼此反平行对准,所以通过使两个铁磁膜具有基本上相同的厚度,可以使两个力矩彼此基本抵消。 结果,基本上没有偶极场来不利地影响自由铁磁层,这提高了传感器的灵敏度,并且允许在磁记录数据存储系统中实现更高的记录密度。