Abstract:
Methods of curing anti-reflective coatings, and photovoltaic modules produced using the methods, are described. The methods can include liquid metal curing, plasma curing, air knife curing, and flame curing.
Abstract:
A method and apparatus for forming a crystalline cadmium stannate layer of a photovoltaic device by heating an amorphous layer in the presence of hydrogen gas.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.
Abstract:
A method to improve operation of a CdTe-based photovoltaic device is disclosed, the method comprising the steps of depositing a semiconductor absorber layer adjacent to a substrate, depositing a semiconductor buffer layer adjacent to the semiconductor layer, and annealing at least one of the semiconductor absorber layer and the semiconductor buffer layer with one of a laser and a flash lamp.
Abstract:
Methods and devices are described for a photovoltaic device. The photovoltaic device includes a glass substrate, a semiconductor absorber layer formed over the glass substrate, a metal back contact layer formed over the semiconductor absorber layer, and a p-type back contact buffer layer formed from one of MnTe, Cd1-xMnxTe, and SnTe, the buffer layer disposed between the semiconductor absorber layer and the metal back contact layer.
Abstract:
Embodiments include photovoltaic devices that include at least one absorber layer, e.g. CdTe and/or CdSxTe1-x (where 0≦x≦1), having an average grain size to thickness ratio from greater than 2 to about 50 and an average grain size of between about 4 μm and about 14 μm and methods for forming the same.
Abstract:
A method for producing apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
Abstract:
Methods and compositions for forming perovskite hole transport layers for use in manufacturing photovoltaic devices are described. Embodiments include using a plurality of hole transport materials to produce high-performance HTL contacts to improve performance and stability.
Abstract:
A photovoltaic device includes a substrate structure and a p-type semiconductor absorber layer. A photovoltaic device may include a CdSeTe layer. A process for manufacturing a photovoltaic device includes forming a CdSeTe layer over a substrate. The process includes forming a p-type cadmium selenide telluride absorber layer.
Abstract:
A photovoltaic device includes a substrate structure and at least one Se-containing layer, such as a CdSeTe layer. A process for manufacturing the photovoltaic device includes forming the CdSeTe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process can also include controlling a thickness range of the Se-containing layer.