摘要:
The present invention is related to a light emitting device with an insulating layer, which comprises a transparent substrate, a first light emitting unit, a second light emitting unit, an insulating layer and a conducting layer. The first light emitting unit and the second light emitting unit are set up on the transparent substrate, wherein the second light emitting unit has an appearance of a stair structure. The insulating layer is set between the first and the second light emitting units. The conducting layer is on the insulating layer in order to conduct the first and the second light emitting units. Because of the appearance of the stair structure of the second light emitting unit, improving the cladding efficiency of the insulating layer, further improving the insulating efficiency of the insulating layer and avoiding the insulating layer loosing and the leakage between the first and the second light emitting units.
摘要:
A light-emitting diode package (LED package) includes a LED and a carrier. The LED includes a substrate, a semiconductor layer, a first electrode and a second electrode. The semiconductor layer is located on a surface of the substrate and has a rough surface. The semiconductor layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer and a light-emitting layer disposed between the two doped semiconductor layers. The first electrode and the second electrode are disposed on and electrically coupled the first-type doped semiconductor layer and the second-type doped semiconductor layer, respectively. The carrier has a rough carrying surface and includes a first contact pad and a second contact pad disposed on the rough carrying surface. The first electrode and the second electrode of the LED face the carrier and are electrically coupled to the first contact pad and a second contact pad, respectively.
摘要:
A die attachment method for LED chips and the structure thereof are disclosed. While attaching a LED chip to a substrate, surface of two bonding material is ionized by ultrasonic waves so as to make the attachment of a LED chip to a substrate is under low temperature operating condition and having better heat dissipation structure.
摘要:
An epitaxial structure for semiconducting photo detectors is provided. The epitaxial structure contains a substrate having a built-in electric circuit, a first and second metallic layers on top of said substrate electrically connected to the corresponding electrical input and output points of the substrate's electric circuit, and a semiconducting photo detecting element as the topmost part for receiving incident lights.
摘要:
A light-emitting diode device is provided with the following manufacturing method: forming an n-GaN layer on a substrate; growing an SiO2 layer on the n-GaN surface, and using the photo-lithography process to expose the n-GaN within the mesa area; using MOCVD to grow an LED structure in the epitaxy within the mesa area, the formed structure being a p-n coplanar structure due to the selective area characteristic; and finally, forming the electrodes on the structure to complete an LED device. The device can be manufactured without the etching process to form the p-n coplanar structure. In comparison to other conventional manufacturing methods, the method simplifies the manufacturing process, and avoids many problems associated with etching, including non-uniform etching, overly rough surface, etching damages, and current leakage. Furthermore, SiO2 is used as a scattering layer to prevent emitted light from internally reflected, and therefore, improves the external quantum efficiency.
摘要:
A multidirectional light scattering LED and a manufacturing method thereof are disclosed. A metal oxide is irregular disposed over a second semiconductor layer and then is removed by etching. Part of the second semiconductor layer, part of a light-emitting layer or part of the first semiconductor layer is also removed so as to form a scattering layer. A transparent conductive layer is arranged over the second semiconductor layer while further a second electrode is disposed over the transparent conductive layer. A first electrode is installed on the scattering layer. Thus light output from the LED is scattered in multi-directions.
摘要:
An LED includes a substrate, a first type doping semiconductor layer, a first electrode, a light emitting layer, a second type doping semiconductor layer, a second electrode, a first dielectric layer and a first conductive plug. The first type doping semiconductor layer is formed on the substrate, and the light emitting layer, the second type doping semiconductor layer and the second electrode are formed on a portion of the first type doping semiconductor layer in sequence. The first dielectric layer is formed on another portion of the first type doping semiconductor layer where is not covered by the light emitting layer. The first electrode formed on the first dielectric layer is electrically connected with the first type doping semiconductor layer through the first conductive plug formed in the first dielectric layer. Furthermore, the second electrode is electrically connected with the second type doping semiconductor layer.
摘要:
A flip-chip light emitting diode with high light-emitting efficiency is disclosed. The LED includes a transparent conductive layer, an oxide layer, a reflective metal layer, a conductive layer, and a protective diffusion layer sequentially disposed over a p-type semiconductor layer. Thereby, light emitting from a light-emitting layer toward the p-type semiconductor layer is reflected and penetrating a transparent substrate and emitting outwards. Thus the problem of light shielded from the flip-chip type LED is solved and the light-emitting efficiency is improved. Furthermore, the present invention disposes the LED chip in a face-down orientation on a conductive substrate by flip-chip technology so as to enhance heat-dissipation efficiency of the LED.
摘要:
The specification discloses a light-emitting diode and the corresponding manufacturing method. A GaN thick film with a slant surface is formed on the surface of a substrate. An epitaxial slant surface is naturally formed using the properties of the GaN epitaxy. An LED structure is grown on the GaN thick film to form an LED device. This disclosed method and device can simplify the manufacturing process. The invention further uses the GaN thick film epitaxial property to make various kinds of LED chips with multiple slant surfaces and different structures. Since the surface area for emitting light on the chip increases and the multiple slant surfaces reduce the chances of total internal reflections, the light emission efficiency of the invention is much better than the prior art.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device and a manufacturing method thereof are disclosed. The light emitting device includes a substrate, a n-type semiconductor layer over the substrate, an active layer over the n-type semiconductor layer, a p-type semiconductor layer over the active layer, a conductive layer over the p-type semiconductor layer, a first electrode disposed on the conductive layer and a second electrode arranged on exposed part of the n-type semiconductor layer. A resistant reflective layer or a contact window is disposed on the p-type semiconductor layer, corresponding to the first electrode so that current passes beside the resistant reflective layer or by the contact window to the active layer for generating light. When the light is transmitted to the conductive layer for being emitted, it is not absorbed or shielded by the first electrode. Thus the current is distributed efficiently over the conductive layer. Therefore, both LED brightness and efficiency are improved. Moreover, adhesion between the conductive layer and the p-type semiconductor layer is improved so that metal peel-off problem during manufacturing processes can be improved.