Abstract:
For the formation of a stressor on one or more of a source and drain defined on a fin of FINFET semiconductor structure, a method can be employed including performing selective epitaxial growth (SEG) on one or more of the source and drain defined on the fin, separating the fin from a bulk silicon substrate at one or more of the source and drain, and further performing SEG on one or more of the source and drain to form a wrap around epitaxial growth stressor that stresses a channel connecting the source and drain. The formed stressor can be formed so that the epitaxial growth material defining a wrap around configuration connects to the bulk substrate. The formed stressor can increase mobility in a channel connecting the defined source and drain.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices for forming conductive paths between fins for contact-to-gate shorting. One method includes, for instance: obtaining wafer with a substrate, at least one fin, at least one hard mask, and an oxide layer; etching the oxide layer to reveal at least one of a portion of the hard masks; forming sacrificial pillars over the substrate; forming sacrificial gates, wherein at least one sacrificial gate contacts at least one sacrificial pillar; growing an epitaxial layer between the at least one sacrificial gate and the at least one sacrificial pillar; starting a RMG process on the sacrificial gates; etching to remove the sacrificial pillars and form pillar openings; and completing the RMG process to fill the pillar openings and the gate openings with a metal.
Abstract:
A method of reducing parasitic capacitance includes providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate with fin(s) thereon, the fin(s) having at least two dummy transistors integrated therewith and separated by a dielectric region, the dummy transistors including dummy gates with spacers and gate caps, the fin(s) having ends tucked by the dummy gates. The method further includes removing the dummy gates and gate caps, resulting in gate trenches, protecting area(s) of the structure during fabrication process(es) where source/drain parasitic capacitance may occur, and forming air-gaps at a bottom portion of unprotected gate trenches to reduce parasitic capacitance. The resulting semiconductor structure includes a semiconductor substrate with fin(s) thereon, FinFET(s) integral with the fin(s), the FinFET(s) including a gate electrode, a gate liner lining the gate electrode, and air-gap(s) in gate trench(es) of the FinFET(s), reducing parasitic capacitance by at least about 75 percent as compared to no air-gaps.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to gate structures with low resistance and methods of manufacture. The structure includes: an nFET device formed in a first cavity having a first volume which is filled with conductive material; and a pFET device forming in a second cavity having a second volume greater than the first volume. The second volume being filled with the conductive material.
Abstract:
Diodes and fabrication methods thereof are presented. The diodes include, for instance: a first semiconductor region disposed at least partially within a substrate, the first semiconductor region having a first conductivity type; and a second semiconductor region disposed at least partially within the first semiconductor region, the second semiconductor region having a second conductivity type, wherein the first semiconductor region separates the second semiconductor region from the substrate. In one embodiment, the substrate and the first semiconductor region have U-shaped boundary. In a further embodiment, the first semiconductor region comprises an alloy of a first material and a second material, where the concentration of the second material varies from a maximum to a minimum, where the first semiconductor region adjacent to the second semiconductor region has the minimum of the concentration of the second material.
Abstract:
Circuit structures, such as inverters and static random access memories, and fabrication methods thereof are presented. The circuit structures include, for instance: a first transistor, the first transistor having a first channel region disposed above an isolation region; and a second transistor, the second transistor having a second channel region, the second channel region being laterally adjacent to the first channel region of the first transistor and vertically spaced apart therefrom by the isolation region thereof. In one embodiment, the first channel region and the isolation region of the first transistor are disposed above a substrate, and the substrate includes the second channel region of the second transistor. In another embodiment, the first transistor includes a fin structure extending from the substrate, and an upper portion of the fin structure includes the first channel region and a lower portion of the fin structure includes the isolation region.
Abstract:
Tunneling field effect transistors and fabrication methods thereof are provided, which include: an integrated circuit device which includes a circuit input configured to receive an input voltage and a circuit output configured to deliver an output current. The integrated circuit also includes a circuit element having at least one tunneling field effect transistor (TFET). The circuit element connects the circuit input to the circuit output and is characterized by a V-shaped current-voltage diagram. The V-shaped current-voltage diagram describes the relationship between the input voltage of the circuit input and the output current of the circuit output.
Abstract:
Transistor structures and methods of fabricating transistor structures are provided. The methods include: fabricating a transistor structure at least partially within a substrate, the fabricating including: providing a cavity within the substrate; and forming a first portion and a second portion of the transistor structure at least partially within the cavity, the first portion being disposed at least partially between the substrate and the second portion, where the first portion inhibits diffusion of material from the second portion into the substrate. In one embodiment, the transistor structure is a field-effect transistor structure, and the first portion and the second portion include one of a source region or a drain region of the field-effect transistor structure. In another embodiment, the transistor structure is a bipolar junction transistor structure.
Abstract:
A three-dimensional semiconductor device includes a semiconductor substrate, fin(s) coupled to the substrate and surrounded at a bottom portion thereof by isolation material, each fin including a source region, a drain region and a channel region therebetween, a first gate and spacers over a portion of each fin, and a second gate and spacers, the second gate encompassing a common end portion of each fin. The first gate and corresponding source and drain regions act as an access transistor, and the second gate and common end portion(s) of the fin(s) act as a storage capacitor, and a top surface of the second gate acts as a plate for the storage capacitor, when multiple cells are arranged in an array.
Abstract:
Methods are presented for fabricating nanowire structures, such as one or more nanowire field effect transistors. The methods include, for instance: providing a substrate and forming a fin above the substrate so that the fin has a first sidewall including one or more elongate first sidewall protrusions and a second sidewall including one or more elongate second sidewall protrusions, with the one or more elongate second sidewall protrusions being substantially aligned with the one or more elongate first sidewall protrusions; and, anisotropically etching the fin with the elongate first sidewall protrusions and the elongate second sidewall protrusions to define the one or more nanowires. The etchant may be chosen to selectively etch along a pre-defined crystallographic plane, such as the (111) crystallographic plane, to form the nanowire structures.