Abstract:
Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed. Embodiments include forming first and second dummy gates, each with spacers at opposite sides thereof, on a substrate; forming eSiGe source/drain regions at opposite sides of the first dummy gate; forming raised source/drain regions at opposite sides of the second dummy gate; forming a silicon cap on each of the eSiGe and raised source/drain regions; forming an ILD over and between the first and second dummy gates; replacing the first and second dummy gates with first and second HKMG, respectively; forming a contact trench through the ILD into the silicon cap over each of the eSiGe and raised source/drain regions; and forming a silicide over the eSiGe and raised source/drain regions
Abstract:
The disclosure provides methods and devices for separately determining the channel resistance and the extension resistance of a FinFET. An exemplary embodiment includes forming first and second fins parallel to each other, forming at least one fin portion, connecting the first and second fins, forming a gate perpendicular to the first and second fins, over the at least one fin portion, forming a first source and a first drain over the first fin at opposite sides of the gate, and forming a second source and a second drain over the second fin, separate from the first source and drain, at opposite sides of the gate, wherein each of the first and second sources and first and second drains includes an extension region.
Abstract:
A non-planar semiconductor structure includes raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon naturally growing into a diamond shape. The surface area of the epitaxial structure may be increased by removing portion(s) thereof. The removal may create a multi-head (e.g., dual-head) epitaxial structure, together with the neck of the raised structure resembling a Y-shape. Raised structures that are not intended to include an epitaxial structure will be masked during epitaxial structure creation and modification. In addition, in order to have a uniform height, the filler material surrounding the raised structures is recessed around those to receive epitaxial structures.
Abstract:
Methods and design structures for extraction of transistor channel width are disclosed. Embodiments may include determining effective channel widths of transistors of a plurality of integrated circuits as a function of drawn channel widths of the transistors, and determining a target channel width for a target transistor based on the effective channel widths.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to selective shallow trench isolation (STI) fill material for stress engineering in semiconductor structures and methods of manufacture. The structure includes a single diffusion break (SDB) region having at least one shallow trench isolation (STI) region with a stress fill material within a recess of the at least one STI region. The stress fill material imparts a stress on a gate structure adjacent to the at least one STI region.
Abstract:
A composite etch stop layer includes an oxide layer formed over a sacrificial gate structure and a nitride layer formed over the oxide layer. The oxide layer is disposed over only lower portions of the sacrificial gate structure while the nitride layer envelops the oxide layer and is disposed directly over a top surface of the sacrificial gate structure. Sensitivity of the nitride layer to oxidation, such as during the formation of an interlayer dielectric over the composite etch stop layer, is decreased by eliminating the oxide layer from upper portions of the sacrificial gate layer.
Abstract:
A method for eliminating line voids during RMG processing and the resulting device are provided. Embodiments include forming dummy gates over PFET and NFET regions of a substrate, each dummy gate having spacers at opposite sides, and an ILD filling spaces between spacers; removing dummy gate material from the gates, forming a cavity between each pair of spacers; forming a high-k dielectric layer over the ILD and spacers and in the cavities; forming a metal capping layer over the high-k dielectric layer; forming a first work function metal layer over the metal capping layer; removing the first work function metal layer from the PFET region; forming a second work function metal layer over the metal capping layer in the PFET region and over the first work function metal layer in the NFET region; and forming a metal layer over the second work function metal layer, filling the cavities.
Abstract:
Methods for forming an efficient and effective crossed-fins FinFET device for sensing and measuring magnetic fields and resulting devices are disclosed. Embodiments include forming first-fins, parallel to and spaced from each other, in a first direction on a substrate; forming second-fins, parallel to and spaced from each other on the substrate, in a same plane as the first fins and in a second direction perpendicular to and crossing the first-fins; forming a dummy gate with a spacer on each side over channel areas of the first and second fins; forming source/drain (S/D) regions at opposite ends of each first and second fin; forming an ILD over the fins and the dummy gate and planarizing to reveal the dummy gate; removing the dummy gate, forming a cavity; and forming a high-k/metal gate in the cavity.
Abstract:
A method of introducing SDB material with a lower etch rate during a formation of a t-shape SDB STI structure are provided. Embodiments include providing an STI region in a Si substrate; forming a hardmask over the STI region and the Si substrate; forming a cavity through the hardmask over the STI region, the cavity having a width greater than a width of the STI region; depositing a SDB material in the cavity with an etch rate lower than HDP oxide to form a t-shaped SDB STI structure; and removing the hardmask.
Abstract:
A method of making a semiconductor structure is provided including providing a plurality of fins on a semiconductor substrate; depositing a layer containing silicon dioxide on the plurality of fins and on a surface of the semiconductor substrate; depositing a photoresist layer on one or more but less than all of the plurality of fins; etching the layer of silicon dioxide off of one or more of the plurality of fins on which the photoresist layer had not been deposited; stripping the photoresist layer; depositing a layer of pure boron on one or more of the plurality of fins on which a photoresist had not been deposited; and depositing a silicon nitride liner step on the plurality of fins. A partial semiconductor device fabricated by said method is also provided.