Abstract:
Method for forming FinFET source/drain regions with reduced field oxide loss and the resulting devices are disclosed. Embodiments include forming silicon fins separated by a field oxide on a silicon substrate; recessing the field oxide to reveal an upper portion of the silicon fins; forming a spacer layer conformally over the upper portion of the fins and over the field oxide; filling spaces between the fins with a material having high selectivity with the spacer layer; recessing the material; removing the spacer layer above an upper surface of the material; removing the material; recessing the upper portion of the fins; and epitaxially growing source/drain regions on the recessed fins.
Abstract:
Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed. Embodiments include forming first and second dummy gates, each with spacers at opposite sides thereof, on a substrate; forming eSiGe source/drain regions at opposite sides of the first dummy gate; forming raised source/drain regions at opposite sides of the second dummy gate; forming a silicon cap on each of the eSiGe and raised source/drain regions; forming an ILD over and between the first and second dummy gates; replacing the first and second dummy gates with first and second HKMG, respectively; forming a contact trench through the ILD into the silicon cap over each of the eSiGe and raised source/drain regions; and forming a silicide over the eSiGe and raised source/drain regions
Abstract:
Thermal oxidation treatment methods and processes used during fabrication of semiconductor devices are provided. One method includes, for instance: obtaining a device with at least one cavity etched into the device; performing a thermal oxidation treatment to the at least one cavity; and cleaning the at least one cavity. One process includes, for instance: providing a semiconductor device with a substrate, at least one layer over the substrate and at least one fin; forming at least one gate over the fin; doping at least one region below the fin; applying a spacer layer over the device; etching the spacer layer to expose at least a portion of the gate material; etching a cavity into the at least one fin; etching a shaped opening into the cavity; performing thermal oxidation processing on the at least one cavity; and growing at least one epitaxial layer on an interior surface of the cavity.
Abstract:
Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.
Abstract:
Circuit fabrication methods are provided which include, for example: providing the circuit structure with at least one gate structure extending over a first region and a second region of a substrate structure, the at least one gate structure including a capping layer; and modifying an etch property of at least a portion of the capping layer of the at least one gate structure, where the modified etch property inhibits etching of the at least one gate structure during a first etch process facilitating fabrication of at least one first transistor in the first region and inhibits etching of the at least one gate structure during a second etch process facilitating fabrication of at least one second transistor in the second region.
Abstract:
Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
Abstract:
Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
Abstract:
Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.