Abstract:
In one embodiment, a processor includes a non-volatile storage to store a plurality of configurations for the processor, the non-volatile storage including a plurality of entries to store configuration information for the processor for one of the plurality of configurations, the configuration information including at least one of a guaranteed operating frequency and a core count, at least one of the entries to store the core count. The processor further includes a power controller to control the processor to operate at one of the plurality of configurations based at least in part on a selected thermal set point of a plurality of thermal set points of the processor, each of the plurality of thermal set points associated with one of the configurations. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor comprises: a first die including at least one core and at least one first die thermal sensor; a second die including at least one memory and at least one second die thermal sensor; and a thermal controller to receive first thermal data from the at least one first die thermal sensor and second thermal data from the at least one second die thermal sensor, calculate a first thermal margin for the first die based at least in part on the first thermal data and a first thermal loadline for the first die and calculate a second thermal margin for the second die based at least in part on the second thermal data and a second thermal loadline for the second die. Other embodiments are described and claimed.
Abstract:
Embodiments described herein may include apparatuses, systems and/or processes to provide an evaporator including a chamber to receive condensate flow from an input end and output a vapor outflow at an output end with a wick, heated by a surface of the chamber, having variable thickness within the chamber to receive condensate, where the thickness of the wick proximate to the condensate inflow is greater than the thickness of the wick proximate to the vapor outflow. Other embodiments may be described and/or claimed.
Abstract:
In at least some embodiments, an electronic package to maximize heat transfer comprises a plurality of components on a substrate. A stiffener plate is installed over the components. The stiffener plate has openings to expose the components. A plurality of individual integrated heat spreaders are installed within the openings over the components. A first thermal interface material layer (TIM1) is deposited between the components and the plurality of individual integrated heat spreaders. In at least some embodiments, the thickness of the TIM1 is minimized for the components.
Abstract:
An apparatus is described. The apparatus includes an electronic system. The electronic system includes a chassis. The electronic system includes a semiconductor chip cooling component that is rigidly fixed to the chassis. The electronic system includes a packaged semiconductor chip having a lid that is contact with the semiconductor chip cooling component. The electronic system includes an electronic circuit board. The packaged semiconductor chip is electro-mechanically attached to the electronic circuit board.
Abstract:
An integrated circuit device may include an integrated circuit die coupled to a substrate, and a porous material on the die or a thermal interface material and extending beyond the edges of the die and over the substrate. An integrated circuit system may include a substrate with a power supply and an integrated circuit die, such that a porous material on the die extends over the substrate beyond a footprint of the die. A porous material may be formed on and beyond an edge of a received integrated circuit die coupled to a substrate or a thermal interface material on the die.
Abstract:
In one embodiment, a processor comprises: a first die including at least one core and at least one first die thermal sensor; a second die including at least one memory and at least one second die thermal sensor; and a thermal controller to receive first thermal data from the at least one first die thermal sensor and second thermal data from the at least one second die thermal sensor, calculate a first thermal margin for the first die based at least in part on the first thermal data and a first thermal loadline for the first die and calculate a second thermal margin for the second die based at least in part on the second thermal data and a second thermal loadline for the second die. Other embodiments are described and claimed.
Abstract:
A method for determining whether to perform maintenance for an electronic device includes generating a baseline characterization of thermal performance for a heat-generating component of the electronic device at a baseline date. The method also includes generating an assessment characterization of the thermal performance at an assessment date after the baseline date. The method further includes generating a historical trend that includes the baseline characterization and the assessment characterization. Additionally, the method includes determining whether to perform maintenance for the heat-generating component based on the historical trend and a specified maintenance parameter.
Abstract:
In one embodiment, a processor comprises: a first die including at least one core and at least one first die thermal sensor; a second die including at least one memory and at least one second die thermal sensor; and a thermal controller to receive first thermal data from the at least one first die thermal sensor and second thermal data from the at least one second die thermal sensor, calculate a first thermal margin for the first die based at least in part on the first thermal data and a first thermal loadline for the first die and calculate a second thermal margin for the second die based at least in part on the second thermal data and a second thermal loadline for the second die. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor includes a non-volatile storage to store a plurality of configurations for the processor, the non-volatile storage including a plurality of entries to store configuration information for the processor for one of the plurality of configurations, the configuration information including at least one of a guaranteed operating frequency and a core count, at least one of the entries to store the core count. The processor further includes a power controller to control the processor to operate at one of the plurality of configurations based at least in part on a selected thermal set point of a plurality of thermal set points of the processor, each of the plurality of thermal set points associated with one of the configurations. Other embodiments are described and claimed.