Abstract:
A method for manufacturing a semiconductor device includes forming a stacked configuration of first and second semiconductor layers on a semiconductor substrate, wherein the stacked configuration comprises a repeating arrangement of a second semiconductor layer stacked on a first semiconductor layer, forming a plurality of dummy gates spaced apart from each other on the stacked configuration, wherein the plurality of dummy gates cover a portion of the stacked configuration in a channel region, performing an implantation of a semiconductor material on exposed portions of the stacked configuration in a source/drain region, wherein the implantation increases a concentration of the semiconductor material in the exposed portions of the stacked configuration, and selectively removing first semiconductor layers having an increased concentration of the semiconductor material from the source/drain region, wherein the removed first semiconductor layers correspond in position to the first semiconductor layers in the channel region.
Abstract:
The disclosure provides methods for directed self-assembly (DSA) of a block co-polymer (BCP). In one embodiment, a method includes: forming an oxide spacer along each of a first sidewall and a second sidewall of a cavity in a semiconductor substrate; forming a neutral layer between the oxide spacers and along a bottom of the cavity; and removing the oxide spacers to expose the first and second sidewalls and a portion of the bottom of the cavity adjacent the first and second sidewalls.
Abstract:
A method, system, and non-transitory computer readable medium for reducing chemo-epitaxy directed-self assembly (DSA) defects of a guiding pattern layout, include inserting an internal dummy between a first portion of the guiding pattern and a second portion of the guiding pattern if a vertical spacing is equal to or greater than a first predetermined distance, inserting a first external dummy along an external edge of the guiding pattern in a vertical direction if the vertical spacing is greater than a second predetermined distance, and inserting an anti-taper structure on the first external dummy if a second distance from the external edge of the guiding pattern to the edge of the first external dummy is greater than a first distance.
Abstract:
A method, system, and non-transitory computer readable medium for reducing chemo-epitaxy directed-self assembly (DSA) defects of a layout of a guiding pattern, include inserting an internal dummy between a first portion of the guiding pattern and a second portion of the guiding pattern if a vertical spacing is equal to or greater than a first predetermined distance, inserting a first external dummy along an external edge of the guiding pattern in a vertical direction if the vertical spacing is greater than a second predetermined distance, and inserting an anti-taper structure on the first external dummy if a second distance from the external edge of the guiding pattern to the edge of the first external dummy is greater than a first distance.
Abstract:
A pattern-forming method includes forming a base pattern having recessed portions on a front face side of a substrate. A first composition is applied on lateral faces of the recessed portions of the base pattern, to form a coating. The first composition includes a first polymer which includes on at least one end of a main chain thereof a group capable of interacting with the base pattern. A surface of the coating is contacted with a highly polar solvent. The recessed portions are filled with a second composition. The second composition includes a second polymer which is capable of forming a phase separation structure through directed self-assembly. Phase separation is permitted in the second composition to form phases. A part of the phases is removed to form a miniaturized pattern. The substrate is etched directly or indirectly using the miniaturized pattern as a mask.
Abstract:
A method, system, and non-transitory computer readable medium for reducing chemo-epitaxy directed-self assembly (DSA) defects of a layout of a guiding pattern, include inserting an internal dummy between a first portion of the guiding pattern and a second portion of the guiding pattern if a vertical spacing is equal to or greater than a first predetermined distance, inserting a first external dummy along an external edge of the guiding pattern in a vertical direction if the vertical spacing is greater than a second predetermined distance, and inserting an anti-taper structure on the first external dummy if a second distance from the external edge of the guiding pattern to the edge of the first external dummy is greater than a first distance.
Abstract:
The disclosure provides methods for directed self-assembly (DSA) of a block co-polymer (BCP). In one embodiment, a method includes: forming an oxide spacer along each of a first sidewall and a second sidewall of a cavity in a semiconductor substrate; forming a neutral layer between the oxide spacers and along a bottom of the cavity; and removing the oxide spacers to expose the first and second sidewalls and a portion of the bottom of the cavity adjacent the first and second sidewalls.
Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
A patterned photoresist is provided atop a substrate. A hardening agent is applied to the patterned photoresist to provide a polymeric coated patterned photoresist. The polymeric coated patterned photoresist is baked to provide a hardened photoresist, and subsequent the baking step, the polymeric coating is removed from the hardened photoresist by rinsing. The hardened photoresist can be removed anytime during the patterning of the substrate by an aqueous resist developer.
Abstract:
A method for defining a template for directed self-assembly (DSA) materials includes patterning a resist on a stack including an ARC and a mask formed over a hydrophilic layer. A pattern is formed by etching the ARC and the mask to form template lines which are trimmed to less than a minimum feature size (L). Hydrophobic spacers are formed on the template lines and include a fractional width of L. A neutral brush layer is grafted to the hydrophilic layer. A DSA material is deposited between the spacers and annealed to form material domains in a form of alternating lines of a first and a second material wherein the first material in contact with the spacers includes a width less than a width of the lines. A metal is added to the domains forming an etch resistant second material. The first material and the spacers are removed to form a DSA template pattern.