Chip security fingerprint
    3.
    发明授权

    公开(公告)号:US10964648B2

    公开(公告)日:2021-03-30

    申请号:US15494671

    申请日:2017-04-24

    Abstract: Various methods and structures for fabricating a semiconductor chip structure comprising a chip identification “fingerprint” layer. A semiconductor chip structure includes a substrate and a chip identification layer disposed on the substrate, the chip identification layer comprising random patterns of electrically conductive material in trenches formed in a semiconductor layer. The chip identification layer is sandwiched between two layers of electrodes that have a crossbar structure. A first crossbar in the crossbar structure is located on a first side of the chip identification layer and includes a first set of electrical contacts in a first grid pattern contacting the first side of the chip identification layer. A second crossbar in the crossbar structure is located on a second side of the chip identification layer and includes a second set of electrical contacts in a second grid pattern contacting the second side of the chip identification layer.

    Electronic devices having spiral conductive structures

    公开(公告)号:US10784333B2

    公开(公告)日:2020-09-22

    申请号:US16456610

    申请日:2019-06-28

    Abstract: Techniques for generating enhanced inductors and other electronic devices are presented. A device generator component (DGC) performs directed-self assembly (DSA) co-polymer deposition on a circular guide pattern formed in low-k dielectric film, and DSA annealing to form two polymers in the form of alternating concentric rings; performs a loop cut in the concentric rings to form concentric segments; fills the cut portion with insulator material; selectively removes first polymer, fills the space with low-k dielectric, and planarizes the surface; selectively removes the second polymer, fills the space with conductive material, and planarizes the surface; deposits low-k film on top of the concentric segments and insulator material that filled the loop cut portion; forms vias in the low-k film, wherein each via spans from an end of one segment to an end of another segment; and fills vias with conductive material to form conductive connectors to form substantially spiral conductive structure.

    CROSSBAR REINFORCED SEMICONDUCTOR FINS HAVING REDUCED WIGGLING

    公开(公告)号:US20200135539A1

    公开(公告)日:2020-04-30

    申请号:US16170358

    申请日:2018-10-25

    Abstract: A method for forming a silicon structure. A non-limiting example of the method includes forming at least two semiconductor fins on a substrate. A polymer brush material is formed over the fins and the substrate. A block copolymer (BCP) composed of a first polymer and a second polymer which are covalently bound together is applied over the polymer brush material, such that the first polymer and second polymer self-assemble into a plurality of interleaved first microdomains and second microdomains perpendicular to and within a trench between the fins. The first microdomains are composed of the first polymer and the second microdomains are composed of the second polymer. The second microdomains can be selectively removed.

    ELECTRONIC DEVICES HAVING SPIRAL CONDUCTIVE STRUCTURES

    公开(公告)号:US20190341444A1

    公开(公告)日:2019-11-07

    申请号:US16456610

    申请日:2019-06-28

    Abstract: Techniques for generating enhanced inductors and other electronic devices are presented. A device generator component (DGC) performs directed-self assembly (DSA) co-polymer deposition on a circular guide pattern formed in low-k dielectric film, and DSA annealing to form two polymers in the form of alternating concentric rings; performs a loop cut in the concentric rings to form concentric segments; fills the cut portion with insulator material; selectively removes first polymer, fills the space with low-k dielectric, and planarizes the surface; selectively removes the second polymer, fills the space with conductive material, and planarizes the surface; deposits low-k film on top of the concentric segments and insulator material that filled the loop cut portion; forms vias in the low-k film, wherein each via spans from an end of one segment to an end of another segment; and fills vias with conductive material to form conductive connectors to form substantially spiral conductive structure.

Patent Agency Ranking