Abstract:
A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
Abstract:
A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A finFET semiconductor device includes a semiconductor-on-insulator (SOI) substrate including a buried insulator layer, a plurality of semiconductor fins on the buried insulator layer, and a gate structure covering the semiconductor fins, at least one buried stressor element embedded in the buried insulator layer, and a source/drain element on an upper surface of the at least one buried stressor element and integrally formed with at least one semiconductor fin among the plurality of semiconductor fins, the at least one buried stressor element applying a stress upon the source/drain element from therebeneath.
Abstract:
A method for inducing stress within the channel of a semiconductor fin structure includes forming a semiconductor fin on a substrate; forming a fin hard mask layer, multiple isolation regions, and multiple spacers, on the semiconductor fin; forming a gate structure on the semiconductor fin; and oxidizing multiple outer regions of the semiconductor fin to create oxidized stressors that induce compressive stress within the channel of the semiconductor fin. A method for inducing tensile stress within the channel of a semiconductor fin by oxidizing a central region of the semiconductor fin is also provided. Structures corresponding to the methods are also provided.
Abstract:
An array of stacks containing a semiconductor fins and an oxygen-impermeable cap is formed on a semiconductor substrate with a substantially uniform areal density. Oxygen-impermeable spacers are formed around each stack, and the semiconductor substrate is etched to vertically extend trenches. Semiconductor sidewalls are physically exposed from underneath the oxygen-impermeable spacers. The oxygen-impermeable spacers are removed in regions in which semiconductor fins are not needed. A dielectric oxide material is deposited to fill the trenches. Oxidation is performed to convert a top portion of the semiconductor substrate and semiconductor fins not protected by oxygen-impermeable spacers into dielectric material portions. Upon removal of the oxygen-impermeable caps and remaining oxygen-impermeable spacers, an array including semiconductor fins and dielectric fins is provided. The dielectric fins alleviate variations in the local density of protruding structures, thereby reducing topographical variations in the height of gate level structures to be subsequently formed.
Abstract:
A method for preventing damage to the insulator layer of a semiconductor device during creation of fin field effect transistor (FinFET) includes obtaining a material stack having an active semiconductor layer, an insulator layer, and an etch stop layer between the active semiconductor layer and the insulator layer; forming a fin-array from the active semiconductor layer; patterning the fin-array; and fabricating a FinFET device from the patterned fin-array; where the etch stop layer is resistant to processes the etch stop layer is exposed to during the forming, patterning, and fabricating operations, such that the etch stop layer and the insulator layer are not damaged during the forming, patterning, and fabricating operations.
Abstract:
Forming a plurality of initial trenches that extend through a layer of silicon-germanium and into a substrate to define an initial fin structure comprised of a portion of the layer of germanium-containing material and a first portion of the substrate, forming sidewall spacers adjacent the initial fin structure, performing an etching process to extend the initial depth of the initial trenches, thereby forming a plurality of final trenches having a final depth that is greater than the initial depth and defining a second portion of the substrate positioned under the first portion of the substrate, forming a layer of insulating material over-filling the final trenches and performing a thermal anneal process to convert at least a portion of the first or second portions of the substrate into a silicon dioxide isolation material that extends laterally under an entire width of the portion of the germanium-containing material.
Abstract:
Forming a plurality of initial trenches that extend through a layer of silicon-germanium and into a substrate to define an initial fin structure comprised of a portion of the layer of germanium-containing material and a first portion of the substrate, forming sidewall spacers adjacent the initial fin structure, performing an etching process to extend the initial depth of the initial trenches, thereby forming a plurality of final trenches having a final depth that is greater than the initial depth and defining a second portion of the substrate positioned under the first portion of the substrate, forming a layer of insulating material over-filling the final trenches and performing a thermal anneal process to convert at least a portion of the first or second portions of the substrate into a silicon dioxide isolation material that extends laterally under an entire width of the portion of the germanium-containing material.
Abstract:
Methods and structures for forming a localized silicon-on-insulator (SOI) finFET are disclosed. Fins are formed on a bulk substrate. Nitride spacers protect the fin sidewalls. A shallow trench isolation region is deposited over the fins. An oxidation process causes oxygen to diffuse through the shallow trench isolation region and into the underlying silicon. The oxygen reacts with the silicon to form oxide, which provides electrical isolation for the fins. The shallow trench isolation region is in direct physical contact with the fins and/or the nitride spacers that are disposed on the fins. Structures comprising bulk-type fins, SOI-type fins, and planar regions are also disclosed.