-
公开(公告)号:US11424539B2
公开(公告)日:2022-08-23
申请号:US16472830
申请日:2017-12-20
Applicant: Intel Corporation
Inventor: Erkan Alpman , Arnaud Lucres Amadjikpe , Omer Asaf , Kameran Azadet , Rotem Banin , Miroslav Baryakh , Anat Bazov , Stefano Brenna , Bryan K. Casper , Anandaroop Chakrabarti , Gregory Chance , Debabani Choudhury , Emanuel Cohen , Claudio Da Silva , Sidharth Dalmia , Saeid Daneshgar Asl , Kaushik Dasgupta , Kunal Datta , Brandon Davis , Ofir Degani , Amr M. Fahim , Amit Freiman , Michael Genossar , Eran Gerson , Eyal Goldberger , Eshel Gordon , Meir Gordon , Josef Hagn , Shinwon Kang , Te Yu Kao , Noam Kogan , Mikko S. Komulainen , Igal Yehuda Kushnir , Saku Lahti , Mikko M. Lampinen , Naftali Landsberg , Wook Bong Lee , Run Levinger , Albert Molina , Resti Montoya Moreno , Tawfiq Musah , Nathan G. Narevsky , Hosein Nikopour , Oner Orhan , Georgios Palaskas , Stefano Pellerano , Ron Pongratz , Ashoke Ravi , Shmuel Ravid , Peter Andrew Sagazio , Eren Sasoglu , Lior Shakedd , Gadi Shor , Baljit Singh , Menashe Soffer , Ra'anan Sover , Shilpa Talwar , Nebil Tanzi , Moshe Teplitsky , Chintan S. Thakkar , Jayprakash Thakur , Avi Tsarfati , Yossi Tsfati , Marian Verhelst , Nir Weisman , Shuhei Yamada , Ana M. Yepes , Duncan Kitchin
IPC: H01Q5/47 , H01Q9/04 , H01Q1/24 , H01Q1/38 , H01Q1/48 , H01Q3/24 , H01Q21/24 , H03L7/14 , H04B1/3827 , H04B7/0456 , H04B7/06 , H04B15/04
Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
-
公开(公告)号:US11177820B2
公开(公告)日:2021-11-16
申请号:US16933292
申请日:2020-07-20
Applicant: Intel Corporation
Inventor: Albert Molina , Martin Clara , Matteo Camponeschi , Christian Lindholm , Kameran Azadet
Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells. The at least one comparator circuit is configured to output a comparison signal based on the cell output signals of the sampling cells. Additionally, the SAR ADC comprises a calibration circuit configured to supply at least one respective control signal to the respective second switch circuit of the sampling cells for controlling the second switch circuits.
-
公开(公告)号:US10742225B1
公开(公告)日:2020-08-11
申请号:US16728226
申请日:2019-12-27
Applicant: Intel Corporation
Inventor: Albert Molina , Martin Clara , Matteo Camponeschi , Christian Lindholm , Kameran Azadet
Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells. The at least one comparator circuit is configured to output a comparison signal based on the cell output signals of the sampling cells. Additionally, the SAR ADC comprises a calibration circuit configured to supply at least one respective control signal to the respective second switch circuit of the sampling cells for controlling the second switch circuits.
-
公开(公告)号:US12003248B2
公开(公告)日:2024-06-04
申请号:US17131819
申请日:2020-12-23
Applicant: Intel Corporation
Inventor: Matteo Camponeschi , Albert Molina , Kannan Rajamani , Giacomo Cascio , Christian Lindholm
CPC classification number: H03M1/1009 , H04B1/40 , H04L5/0048
Abstract: A method and system for controlling an analog-to-digital converter (ADC) in an observation path in a transceiver. The transceiver includes a transmit path, a receive path, and an observation path. The observation path includes an analog buffer and an observation ADC. A controller generates a control signal to control sampling events at the observation ADC to activate the observation ADC at combined uniform and non-uniform sampling instants. The controller may also generate a second control signal indicating whether digital data obtained by the observation ADC is valid or not. The digital data generated by the observation ADC at non-uniform sampling instants is indicated as invalid and digital data generated by the observation ADC at uniform sampling instants is indicated as valid. The digital data indicated as invalid may be discarded and the digital data indicated as valid is used for calibration of the transmit path or the receive path.
-
公开(公告)号:US11271578B2
公开(公告)日:2022-03-08
申请号:US17059495
申请日:2019-03-29
Applicant: Intel Corporation
Inventor: Albert Molina , Kameran Azadet , Matteo Camponeschi , Jose Luis Ceballos , Christian Lindholm
Abstract: A time-interleaved Analog-to-Digital Converter, ADC, system is provided. The time-inter-leaved ADC system includes time-interleaved first and second ADC circuits and a switching circuit. The switching circuit is configured to selectively supply an analog input signal for digitization to at least one of the first ADC circuit, the second ADC circuit or ground, and to selectively supply an analog calibration signal to at least one of the first ADC circuit, the second ADC circuit or ground. Further, the time-interleaved ADC system includes an output circuit configured to selectively generate, based on least one of a first digital signal output by the first ADC circuit and a second digital signal output by the second ADC circuit, a digital output signal.
-
公开(公告)号:US11082054B1
公开(公告)日:2021-08-03
申请号:US16912812
申请日:2020-06-26
Applicant: Intel Corporation
Inventor: Giacomo Cascio , Christian Lindholm , Albert Molina , Martin Clara
Abstract: The present disclosure relates to a time-interleaved ADC circuit. The time-interleaved ADC circuit comprises an input for an analog input signal, a first ADC bank comprising a first plurality of parallel time-multiplexed ADCs, wherein the first plurality of parallel time-multiplexed ADCs is configured to subsequently generate a first plurality of samples of the analog input signal during a first time interval, a first buffer amplifier coupled between the input and the first ADC bank. The time-interleaved ADC circuit further comprises a second ADC bank comprising a second plurality of parallel time-multiplexed ADCs, wherein the second plurality of parallel time-multiplexed ADCs is configured to subsequently generate a second plurality of samples of the analog input signal during a second time interval, wherein the first and the second time intervals are subsequent time intervals, a second buffer amplifier coupled between the input and the second ADC bank. The first ADC bank has associated therewith a first dummy sampler, wherein the ADC circuit is configured to activate the first dummy sampler before the start of the first time interval. The second ADC bank has associated therewith a second dummy sampler, wherein the ADC circuit is configured to activate the second dummy sampler before the start of the second time interval.
-
公开(公告)号:US10601434B1
公开(公告)日:2020-03-24
申请号:US16369237
申请日:2019-03-29
Applicant: Intel Corporation
Inventor: Albert Molina , Kameran Azadet , Matteo Camponeschi , Jose Luis Ceballos , Christian Lindholm , Hundo Shin , Martin Clara
Abstract: An apparatus for calibrating a time-interleaved analog-to-digital converter including a plurality of time-interleaved analog-to-digital converter circuits is provided. The apparatus includes an analog signal generation circuit configured to generate an analog calibration signal based on a digital calibration signal representing one or more digital data sequences for calibration. The analog calibration signal is a wideband signal. Further, the apparatus includes a coupling circuit configured to controllably couple an input node of the time-interleaved analog-to-digital converter to either the analog signal generation circuit or to a node capable of providing an analog signal for digitization.
-
公开(公告)号:US20200091608A1
公开(公告)日:2020-03-19
申请号:US16472830
申请日:2017-12-20
Applicant: Intel Corporation
Inventor: Erkan Alpman , Arnaud Lucres Amadjikpe , Omer Asaf , Kameran Azadet , Rotem Banin , Miroslav Baryakh , Anat Bazov , Stefano Brenna , Bryan K. Casper , Anandaroop Chakrabarti , Gregory Chance , Debabani Choudhury , Emanuel Cohen , Claudio Da Silva , Sidharth Dalmia , Saeid Daneshgar Asl , Kaushik Dasgupta , Kunal Datta , Brandon Davis , Ofir Degani , Amr M. Fahim , Amit Freiman , Michael Genossar , Eran Gerson , Eyal Goldberger , Eshel Gordon , Meir Gordon , Josef Hagn , Shinwon Kang , Te Yu Kao , Noam Kogan , Mikko S. Komulainen , Igal Yehuda Kushnir , Saku Lahti , Mikko M. Lampinen , Naftali Landsberg , Wook Bong Lee , Run Levinger , Albert Molina , Resti Montoya Moreno , Tawfiq Musah , Nathan G. Narevsky , Hosein Nikopour , Oner Orhan , Georgios Palaskas , Stefano Pellerano , Ron Pongratz , Ashoke Ravi , Shmuel Ravid , Peter Andrew Sagazio , Eren Sasoglu , Lior Shakedd , Gadi Shor , Baljit Singh , Menashe Soffer , Ra'anan Sover , Shilpa Talwar , Nebil Tanzi , Moshe Teplitsky , Chintan S. Thakkar , Jayprakash Thakur , Avi Tsarfati , Yossi Tsfati , Marian Verhelst , Nir Weisman , Shuhei Yamada , Ana M. Yepes , Duncan Kitchin
IPC: H01Q9/04 , H01Q1/38 , H01Q1/48 , H01Q1/24 , H01Q5/47 , H01Q3/24 , H01Q21/24 , H04B1/3827 , H04B15/04 , H04B7/0456 , H04B7/06 , H03L7/14
Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
-
公开(公告)号:US10164800B2
公开(公告)日:2018-12-25
申请号:US15475783
申请日:2017-03-31
Applicant: Intel Corporation
Inventor: Albert Molina , Kameran Azadet
IPC: H04L25/02 , H04L27/26 , H04B7/0413 , H04J13/00
Abstract: An apparatus and a method for estimation a wireless channel are disclosed. For example, the method correlates, by a correlator, a plurality of signals of a combined signal received by a receive antenna over the wireless channel from a plurality of transmit antennas, with respective DMRSs of the plurality of transmit antennas, converts, by a converter, the correlated plurality of signals from frequency to time domain, iteratively peak cancels, by a peak canceller, a largest peak of the combined impulse response and stores a scaling factor and location pair of the cancelled peak until a magnitude of a next largest peak is below a predetermined threshold, assigns, by an assigner, each of the scaling factor and location pairs to a transmit antenna, and estimates, by an estimator, for each of the plurality of transmit antennas, the wireless channel based on the assigned scaling factor and location pairs.
-
-
-
-
-
-
-
-