Abstract:
An integrated MEMS acoustic sensor has a MEMS transducer and a programmable electronic interface. The programmable electronic interface includes non-volatile memory and is coupled to the MEMS transducer. Using programmable electrical functions, the programmable electronic interface is operable to sense variations in the MEMS transducer caused by application of an acoustic pressure to the MEMS transducer.
Abstract:
A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
Abstract:
Facilitating live fingerprint detection utilizing an integrated ultrasound and infrared (IR) sensor is presented herein. A fingerprint sensor can comprise a first substrate comprising the IR sensor, and a second substrate comprising an ultrasonic transducer. The second substrate is attached to a top portion of the first substrate, and a temperature output of the IR sensor facilitates a determination that a fingerprint output of the ultrasonic transducer corresponds to a finger. The IR sensor can comprise polysilicon comprising a thermopile and an array of photonic crystals thermally coupled to the thermopile.
Abstract:
A sensor chip includes a first substrate with a first surface and a second surface including at least one CMOS circuit, a first MEMS substrate with a first surface and a second surface on opposing sides of the first MEMS substrate, a second substrate, a second MEMS substrate, and a third substrate including at least one CMOS circuit. The first surface of the first substrate is attached to a packaging substrate and the second surface of the first substrate is attached to the first surface of the first MEMS substrate. The second surface of the first MEMS substrate is attached to the second substrate. The first substrate, the first MEMS substrate, the second substrate and the packaging substrate are provided with electrical inter-connects.
Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
A micro electro-mechanical system (MEMS) device is provided. The MEMS device includes: a first substrate having a first surface and a second surface, and a port disposed through the first substrate, wherein the port is configured to receive acoustic waves and wherein the first surface is exposed to an environment outside the MEMS device; and a diaphragm coupled to and facing the second surface and configured to deflect in response to pressure differential at the diaphragm in response to the received acoustic waves. The MEMS device also includes a second substrate coupled to and facing the diaphragm, and including circuitry, wherein the second substrate includes a recess region forming an integrated back cavity in the MEMS device. The MEMS device also includes an electrical connection electrically coupling the first substrate and the second substrate and configured to transmit an electrical signal indicative of the deflection of the diaphragm.
Abstract:
A method and system for changing a pressure within at least one enclosure in a MEMS device are disclosed. In a first aspect, the method comprises applying a laser through one of the at least two substrates onto a material which changes the pressure within at least one enclosure when exposed to the laser, wherein the at least one enclosure is formed by the at least two substrates. In a second aspect, the system comprises a MEMS device that includes a first substrate, a second substrate bonded to the first substrate, wherein at least one enclosure is located between the first and the second substrates, a metal layer within one of the first substrate and the second substrate, and a material vertically oriented over the metal layer, wherein when the material is heated the material changes a pressure within the at least one enclosure.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
Abstract:
A MEMS device is disclosed. The MEMS device comprises a first plate with a first surface and a second surface; and an anchor attached to a first substrate. The MEMS device further includes a second plate with a third surface and a fourth surface attached to the first plate. A linkage connects the anchor to the first plate, wherein the first plate and second plate are displaced in the presence of an acoustic pressure differential between the first and second surfaces of the first plate. The first plate, second plate, linkage, and anchor are all contained in an enclosure formed by the first substrate and a second substrate, wherein one of the first and second substrates contains a through opening to expose the first surface of the first plate to the environment.