摘要:
A semiconductor structure which includes a semiconductor on insulator (SOI) substrate. The SOI substrate includes a base semiconductor layer; a buried oxide (BOX) layer in contact with the base semiconductor layer; and an SOI layer in contact with the BOX layer. The semiconductor structure further includes a circuit formed with respect to the SOI layer, the circuit including an N type field effect transistor (NFET) having source and drain extensions in the SOI layer and a gate; and a P type field effect transistor (PFET) having source and drain extensions in the SOI layer and a gate. There may also be a well under each of the NFET and PFET. There is a nonzero electrical bias being applied to the. SOI substrate. One of the NFET extensions and PFET extensions may be underlapped with respect to the NFET gate or PFET gate, respectively.
摘要:
A common cut mask is employed to define a gate pattern and a local interconnect pattern so that local interconnect structures and gate structures are formed with zero overlay variation relative to one another. A local interconnect structure may be laterally spaced from a gate structure in a first horizontal direction, and contact another gate structure in a second horizontal direction that is different from the first horizontal direction. Further, a gate structure may be formed to be collinear with a local interconnect structure that adjoins the gate structure. The local interconnect structures and the gate structures are formed by a common damascene processing step so that the top surfaces of the gate structures and the local interconnect structures are coplanar with each other.
摘要:
A transistor includes a first semiconductor layer. A second semiconductor layer is located on the first semiconductor layer. A portion of the second semiconductor layer is removed to expose a first portion of the first semiconductor layer and to provide vertical sidewalls of the second semiconductor layer. A gate spacer is located on the second semiconductor layer. A gate dielectric includes a first portion located on the first portion of the first semiconductor layer and a second portion adjacent to the vertical sidewalls of the second semiconductor layer. A gate conductor is located on the first portion of the gate dielectric and abuts the gate dielectric second portion. A channel region is located in at least part of the first portion of the first semiconductor layer. Raised source/drain regions are located in the second semiconductor layer. At least part of the raised source/drain regions is located below the gate spacer.
摘要:
Doped semiconductor back gate regions self-aligned to active regions are formed by first patterning a top semiconductor layer and a buried insulator layer to form stacks of a buried insulator portion and a semiconductor portion. Oxygen is implanted into an underlying semiconductor layer at an angle so that oxygen-implanted regions are formed in areas that are not shaded by the stack or masking structures thereupon. The oxygen implanted portions are converted into deep trench isolation structures that are self-aligned to sidewalls of the active regions, which are the semiconductor portions in the stacks. Dopant ions are implanted into the portions of the underlying semiconductor layer between the deep trench isolation structures to form doped semiconductor back gate regions. A shallow trench isolation structure is formed on the deep trench isolation structures and between the stacks.
摘要:
Doped semiconductor back gate regions self-aligned to active regions are formed by first patterning a top semiconductor layer and a buried insulator layer to form stacks of a buried insulator portion and a semiconductor portion. Oxygen is implanted into an underlying semiconductor layer at an angle so that oxygen-implanted regions are formed in areas that are not shaded by the stack or masking structures thereupon. The oxygen implanted portions are converted into deep trench isolation structures that are self-aligned to sidewalls of the active regions, which are the semiconductor portions in the stacks. Dopant ions are implanted into the portions of the underlying semiconductor layer between the deep trench isolation structures to form doped semiconductor back gate regions. A shallow trench isolation structure is formed on the deep trench isolation structures and between the stacks.
摘要:
An FET device structure has a Fin-FET device with a fin of a Si based material. An oxide element is abutting the fin and exerts pressure onto the fin. The Fin-FET device channel is compressively stressed due to the pressure on the fin. A further FET device structure has Fin-FET devices in a row. An oxide element extending perpendicularly to the row of fins is abutting the fins and exerts pressure onto the fins. Device channels of the Fin-FET devices are compressively stressed due to the pressure on the fins.
摘要:
An integrated circuit comprising an N+ type layer, a buffer layer arranged on the N+ type layer; a P type region formed on with the buffer layer; an insulator layer overlying the N+ type layer, a silicon layer overlying the insulator layer, an embedded RAM FET formed in the silicon layer and connected with a conductive node of a trench capacitor that extends into the N+ type layer, the N+ type layer forming a plate electrode of the trench capacitor, a first contact through the silicon layer and the insulating layer and electrically connecting to the N+ type layer, a first logic RAM FET formed in the silicon layer above the P type region, the P type region functional as a P-type back gate of the first logic RAM FET, and a second contact through the silicon layer and the insulating layer and electrically connecting to the P type region.
摘要:
An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
摘要翻译:集成电路包括在BOX下方具有单一N +层的SOI衬底,N +层中的P区,N +板的eDRAM和P区上方的逻辑/ SRAM器件。 P区域用作逻辑/ SRAM器件的后门。 可以在P背栅层和N +层之间形成可选的本征(未掺杂)层,以减少结场并降低P背栅与N +层之间的结泄漏。 在另一个实施例中,可以在P区中形成N或N +背栅。 N +后门作为逻辑/ SRAM器件的第二个后门。 SOI eDRAM的N +板,P背栅极和N +背栅极可以在相同或不同的电压电位下被电偏置。 还公开了制造集成电路的方法。
摘要:
Disclosed is an improved double patterning method for forming openings (e.g., vias or trenches) or mesas on a substrate. This method avoids the wafer topography effects seen in prior art double patterning techniques by ensuring that the substrate itself is only subjected to a single etch process. Specifically, in the method, a first mask layer is formed on the substrate and processed such that it has a doped region and multiple undoped regions within the doped region. Then, either the undoped regions or the doped region can be selectively removed in order to form a mask pattern above the substrate. Once the mask pattern is formed, an etch process can be performed to transfer the mask pattern into the substrate. Depending upon whether the undoped regions are removed or the doped region is removed, the mask pattern will form openings (e.g., vias or trenches) or mesas, respectively, on the substrate.
摘要:
An electrical device is provided that in one embodiment includes a semiconductor-on-insulator (SOI) substrate having a semiconductor layer with a thickness of less than 10 nm. A semiconductor device having a raised source region and a raised drain region of a single crystal semiconductor material of a first conductivity is present on a first surface of the semiconductor layer. A resistor composed of the single crystal semiconductor material of the first conductivity is present on a second surface of the semiconductor layer. A method of forming the aforementioned electrical device is also provided.