摘要:
A substrate temperature measuring apparatus includes: a heating source that heat a substrate; a transmission window that transmits therethrough an infrared ray in a range of a wavelength at which the infrared ray cannot transmit through the substrate; and a temperature-measuring instrument having a sensitivity range including the range of the wavelength, and measuring a substrate temperature of the substrate by analyzing an infrared ray radiated from the substrate heated by the heating source and having transmitted through the transmission window.
摘要:
Provided are a ZnO-based thin film and a ZnO-based semiconductor device which allow: reduction in a burden on a manufacturing apparatus; improvement of controllability and reproducibility of doping; and obtaining p-type conduction without changing a crystalline structure. In order to be formed into a p-type ZnO-based thin film, a ZnO-based thin film is formed by employing as a basic structure a superlattice structure of a MgZnO/ZnO super lattice layer 3. This superlattice component is formed with a laminated structure which includes acceptor-doped MgZnO layers 3b and acceptor-doped ZnO layers 3a. Hence, it is possible to improve controllability and reproducibility of the doping, and to prevent a change in a crystalline structure due to a doping material.
摘要:
Provided are a ZnO-based thin film which is inhibited from being doped with an unintentional impurity, and a semiconductor device. The ZnO-based thin film has a main surface: which is formed of MgxZn1-xO (0≦x
摘要翻译:提供了抑制非掺杂杂质的ZnO类薄膜和半导体器件。 ZnO系薄膜的主表面由含有p型杂质的Mg x Zn 1-x O(0&nlE; x <1)形成; 并且当用原子力显微镜观察主表面时满足以下条件中的至少一个:观察到的六边形凹坑的密度不大于5×10 6个凹坑/ cm 2; 并且在主表面中没有发现凹陷部分,其包括形成在凹陷部分的底部中的多个微晶突起。
摘要:
There is provided a semiconductor light emitting device in which light emitting efficiency is totally improved in case of emitting a light having a short wavelength of 400 nm or less by raising internal quantum efficiency by enhancing crystallinity of semiconductor layers laminated and by raising external quantum efficiency by taking out the light emitted by preventing the light emitted from being absorbed in the substrate or the like, as much as possible. In case of laminating ZnO compound semiconductor layers (2 to 6) so as to form a light emitting layer forming portion (7) for emitting the light having a wavelength of 400 nm or less on a substrate (1), a substrate composed of MgxZn1-xO (0≦x≦0.5) is used as the substrate (1).
摘要翻译:提供了一种半导体发光器件,其中通过提高层叠的半导体层的结晶度并通过提高外部量子效率来提高内部量子效率,并且通过提高外部量子效率来发射具有400nm或更小的短波长的光的发光效率得到全面改善 通过防止发射的光被吸收在基板等中而发出的光被尽可能多地取出。 在层叠ZnO化合物半导体层(2〜6)以在基板(1)上形成发光波长为400nm以下的光的发光层形成部(7)的情况下,将由Mg x Zn 1 -xO(0&nlE; x&nlE; 0.5)用作衬底(1)。
摘要:
A wireless plethysmogram sensor unit is capable of obtaining a plethysmogram from a living tissue of a measuring object and of transmitting the plethysmogram to a processing unit outside the wireless plethysmogram sensor unit. The sensor unit includes a light source to emit measuring light into the living tissue and a light receiving element to receive light emerging from the tissue, which is accompanied by pulsation caused by absorption by arteries in the tissue. A memory stores a plethysmogram obtained in accordance with the light received by the light receiving element. A short range wireless communicator transmits the plethysmogram to the processing unit. A power source provides power to other elements in the sensor unit, and a controller controls the elements of the sensor unit.
摘要:
In order to emit a light from an electrode side, in semiconductor light emitting devices such as LED and the like, and liquid crystal, the electrode is formed of a transparent material so as to transmit a light through the transparent electrode and exit the light. A ZnO, which constitutes a material for the transparent electrode, is subject to erosion by acid and alkali, thus, as the case may cause loss of a reliability of the electrode under the influence of ion-containing moisture. In order to solve such a problem, this invention has as its aim a transparent electrode film provided with stability capable of preventing any degradation under the influence of any ion-containing moisture, while being kept acid-proof and alkali-proof. In order to accomplish the above-mentioned aim, this invention provides a transparent electrode made up of a ZnO as its main material, wherein its surface is covered with a Mg-doped ZnO film.
摘要:
Provided is a nitride semiconductor light emitting element that has improved light extraction efficiency and a wide irradiation angle of outgoing light irrespective of the reflectance of a metal used for an electrode. An n side anti-reflection layer 2 and a p side Bragg reflection layer 4 are formed so as to sandwich an MQW active layer 3 that serves as a light emitting region, and the nitride semiconductor light emitting element has a double hetero structure. On top of the n side anti-reflection layer 2, an n electrode 1 is formed. Meanwhile, at the lower side of the p side Bragg reflection layer 4, a p electrode 5, a reflection film 7, and a pad electrode 8 are formed, and the pad electrode is bonded to a support substrate 10 with a conductive bonding layer 9 interposed in between. Both the n side anti-reflection layer 2 and the p side Bragg reflection layer 4 also serve as contact layers. The n side anti-reflection layer 2 is disposed on the light-extracting-direction side while the p side Bragg reflection layer 4 is disposed on the opposite side to the light-extracting-direction side. Consequently, the light extraction efficiency is improved.
摘要:
There is provided a method for manufacturing a nitride semiconductor device which has a p-type nitride semiconductor layer having a high carrier concentration (low resistance) by activating an acceptor without raising a problem of forming nitrogen vacancies which are generated when a high temperature annealing is carried out over an extended time. A semiconductor lamination portion (6) made of nitride semiconductor is formed on a substrate (1) so as to form a light emitting layer, and irradiated by a laser beam having a wavelength λ of λ=h·c/E or less (E is energy capable of separating off the bonding between Mg and H) from the front surface side of the semiconductor lamination portion. Then, a heat treatment is carried out at a temperature of 300 to 400° C. And, similarly to a process for normal nitride semiconductor LED, a light transmitting conductive layer (7) is provided, an n-side electrode (9) is formed on an n-type layer (3) exposed by removing a part of the semiconductor lamination portion by etching, and a p-side electrode (8) is formed on a surface of the light transmitting conductive layer, thereby a LED is obtained.
摘要:
There is provided a semiconductor light emitting device in which light emitting efficiency is totally improved in case of emitting a light having a short wavelength of 400 nm or less by raising internal quantum efficiency by enhancing crystallinity of semiconductor layers laminated and by raising external quantum efficiency by taking out the light emitted by preventing the light emitted from being absorbed in the substrate or the like, as much as possible. In case of laminating ZnO compound semiconductor layers (2 to 6) so as to form a light emitting layer forming portion (7) for emitting the light having a wavelength of 400 nm or less on a substrate (1), a substrate composed of MgxZn1-xO (0≦x≦0.5) is used as the substrate (1).
摘要翻译:提供了一种半导体发光器件,其中通过提高层叠的半导体层的结晶度并通过提高外部量子效率来提高内部量子效率,并且通过提高外部量子效率来发射具有400nm或更小的短波长的光的发光效率得到全面改善 通过防止发射的光被吸收在基板等中而发出的光被尽可能多地取出。 在层叠ZnO化合物半导体层(2〜6)以在基板(1)上形成发光波长为400nm以下的光的发光层形成部(7)的情况下,将由Mg x Zn 1 -xO(0 <= x <= 0.5)用作衬底(1)。
摘要:
A semiconductor light emitting device is provided, in which the light emitting efficiency of a LED is improved. A semiconductor light emitting device (11) includes a light emitting layer (16) made of a GaN-based semiconductor sandwiched with an n-type GaN-based semiconductor layer (17) and a p-type GaN-based semiconductor layer (15), and a ZnO-based or an ITO transparent electrode layer (14). Further, a value of an equation represented by 3t/(A/π)1/2−3(t/(A/π)1/2)2+(t/(A/π)1/2)3 is 0.1 or more, where a thickness of the transparent electrode layer is represented by t and an area of the light emitting layer (light emitting area) of the light emitting device (11) is represented by A. The light emitting efficiency is improved using the transparent electrode layer (14) having an optimum thickness to the light emitting area.