摘要:
A capacitor including a dielectric structure, a lower electrode may be formed on a substrate. The dielectric structure may be formed on the lower electrode, and may include a first thin film, which may improve a morphology of the dielectric structure, and a second thin film, which may have at least one of an EOT larger than that of the first thin film and a dielectric constant higher than that of the first thin film. An upper electrode may be formed on the dielectric structure, and the dielectric structure may have an improved morphology and/or a higher dielectric constant.
摘要:
A method of manufacturing a semiconductor device can include forming a tunnel oxide layer on a substrate, forming a floating gate on the tunnel oxide layer and forming a dielectric layer pattern on the floating gate using an ALD process. The dielectric layer pattern can include a metal precursor that includes zirconium and an oxidant. A control gate can be formed on the dielectric layer pattern. The semiconductor device can include the dielectric layer pattern provided herein.
摘要:
A thin film structure and a capacitor using the film structure and methods for forming the same. The thin film structure may include a first film formed on a substrate using a first reactant and an oxidant for oxidizing the first reactant. A second film may be formed on the first film to suppress crystallization of the first film. A capacitor may include a dielectric layer, which may further include the first thin film and the second thin film.
摘要:
A thin film structure and a capacitor using the film structure and methods for forming the same. The thin film structure may include a first film formed on a substrate using a first reactant and an oxidant for oxidizing the first reactant. A second film may be formed on the first film to suppress crystallization of the first film. A capacitor may include a dielectric layer, which may further include the first thin film and the second thin film.
摘要:
A capacitor including a dielectric structure, a lower electrode may be formed on a substrate. The dielectric structure may be formed on the lower electrode, and may include a first thin film, which may improve a morphology of the dielectric structure, and a second thin film, which may have at least one of an EOT larger than that of the first thin film and a dielectric constant higher than that of the first thin film. An upper electrode may be formed on the dielectric structure, and the dielectric structure may have an improved morphology and/or a higher dielectric constant.
摘要:
Methods of forming a zirconium hafnium oxide thin layer on a semiconductor substrate by supplying tetrakis(ethylmethylamino)zirconium ([Zr{N(C2H5)(CH3)}4], TEMAZ) and tetrakis(ethylmethylamino)hafnium ([Hf{N(C2H5)(CH3)}4], TEMAH) to a substrate are provided. The TEMAZ and the TEMAH may be reacted with an oxidizing agent. The thin layer including zirconium hafnium oxide may be used for a gate insulation layer in a gate structure, a dielectric layer in a capacitor, or a dielectric layer in a flash memory device.
摘要翻译:通过供应四(乙基甲基氨基)锆([Zr(N(C 2 H 5)(CH 3)} 4],TEMAZ)和四(乙基甲基氨基)铪([Hf(N(C 2 H 5))的方式在半导体衬底上形成氧化锆铪薄膜 )(CH 3)} 4],TEMAH)。 TEMAZ和TEMAH可与氧化剂反应。 包括氧化铪的薄层可以用于栅极结构中的栅极绝缘层,电容器中的电介质层或闪存器件中的介电层。
摘要:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
摘要:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
摘要:
A method of fabricating a nonvolatile memory device includes forming a tunnel insulating layer on a semiconductor substrate, forming a charge storage layer on the tunnel insulating layer, forming a dielectric layer on the charge storage layer, the dielectric layer including a first aluminum oxide layer, a silicon oxide layer, and a second aluminum oxide layer sequentially stacked on the charge storage layer, and forming a gate electrode on the dielectric layer, the gate electrode directly contacting the second aluminum oxide layer of the dielectric layer.
摘要:
A method of fabricating a nonvolatile memory device includes forming a tunnel insulating layer on a semiconductor substrate, forming a charge storage layer on the tunnel insulating layer, forming a dielectric layer on the charge storage layer, the dielectric layer including a first aluminum oxide layer, a silicon oxide layer, and a second aluminum oxide layer sequentially stacked on the charge storage layer, and forming a gate electrode on the dielectric layer, the gate electrode directly contacting the second aluminum oxide layer of the dielectric layer.