Abstract:
An array of variable resistance cells based on a programmable threshold transistor and a resistor connected in parallel is described, including 3D and split gate variations. An input voltage applied to the transistor, and the programmable threshold of the transistor, can represent variables of sum-of-products operations. Programmable threshold transistors in the variable resistance cells comprise charge trapping memory transistors, such as floating gate transistors or dielectric charge trapping transistors. The resistor in the variable resistance cells can comprise a buried implant resistor connecting the current-carrying terminals (e.g. source and drain) of the programmable threshold transistor. A voltage sensing sense amplifier is configured to sense the voltage generated by the variable resistance cells as a function of an applied current and the resistance of the variable resistance cells.
Abstract:
A method for treating a semiconductor structure comprising memory devices is provided, wherein a forming process is conducted to initialize operation of the memory devices. The semiconductor structure is subjected to a forming thermal treatment, and step of saving data to the memory devices is performed after the forming thermal treatment.
Abstract:
A neuromorphic computing system includes a synapse array, a switching circuit, a sensing circuit and a processing circuit. The synapse array includes row lines, column lines and synapses. The processing circuit is coupled to the switching circuit and the sensing circuit and is configured to connect a particular column line in the column lines to the first terminal by using the switching circuit, obtain a first voltage value from the particular column line by using the sensing circuit when the particular line is connected to the first terminal, connect the particular column line to the second terminal by using the switching circuit, obtain a second voltage value from the particular column line by using the sensing circuit when the particular line is connected to the second terminal, and estimate a sum-of-product sensing value according to a voltage difference between the first voltage value and the second voltage value.
Abstract:
A semiconductor memory device includes programmable resistance memory cells and a controller which applies a forming pulse to first and second groups of the programmable resistance memory cells for inducing a change in the first group from an initial resistance range to an intermediate resistance range, and for inducing the second group having a resistance outside the intermediate range. When a forming rate is lower than a first forming threshold rate, the controller adjusts the forming pulse until the forming rate is higher than the first forming threshold rate. When a forming rate is higher than the first forming threshold rate but lower than a second forming threshold rate, the controller adjusts the forming pulse until the forming rate is higher than the second forming threshold rate. The controller applies a programming pulse to the first and second groups and generates a chip ID of the semiconductor memory device.
Abstract:
A memory structure including an insulating layer, a first electrode layer and a first barrier is provided. The insulating layer has a recess. The first electrode layer is formed in the recess and has a first top surface. The first barrier is formed between the insulating layer and the first electrode layer, and has a second top surface lower than the first top surface. The first top surface and the second top surface are lower than an opening of the recess.
Abstract:
Circuitry coupled to a programmable element comprising metal oxide is configured to execute a program-verify operation including: an initial cycle of a program operation and a verify operation, and subsequent cycles. The initial cycle includes an initial instance of the program operation to establish a cell resistance of the programmable element, and an initial instance of the verify operation to determine whether the cell resistance of the memory cell is within the target resistance range. At least one of the subsequent cycles includes an additional pulse having a second polarity to the programmable element, and a subsequent instance of the verify operation. The first polarity of the initial program pulse and the second polarity of the additional pulse have opposite polarities. A subsequent instance of the program operation includes applying a subsequent program pulse having the first polarity to the programmable element.
Abstract:
A memory device comprises a substrate, a first electrode layer, a spacer, a memory layer and a second electrode layer. The substrate has a recess. The first electrode layer is formed in the recess and has a top surface exposed from an opening of the recess. The spacer covers on a portion of the top surface, so as to define a contact area on the top surface. The memory layer is formed on the contact area. The second electrode layer is formed on the memory layer and electrically connected to the memory layer.
Abstract:
A conductive bridge resistive memory device is provided, comprising a first electrode, a memory layer electrically coupled to the first electrode, an ion-supplying layer containing a source of ions of a first metal element capable of diffusion into and out of the memory layer, a semiconductor layer disposed between the memory layer and the ion-supplying layer, and a second electrode electrically coupled to the ion-supplying layer.
Abstract:
A metal oxide formed by in situ oxidation assisted by radiation induced photo-acid is described. The method includes depositing a photosensitive material over a metal surface of an electrode. Upon exposure to radiation (for example ultraviolet light), a component, such as a photo-acid generator, of the photosensitive material forms an oxidizing reactant, such as a photo acid, which causes oxidation of the metal at the metal surface. As a result of the oxidation, a layer of metal oxide is formed. The photosensitive material can then be removed, and subsequent elements of the component can be formed in contact with the metal oxide layer. The metal oxide can be a transition metal oxide by oxidation of a transition metal. The metal oxide layer can be applied as a memory element in a programmable resistance memory cell. The metal oxide can be an element of a programmable metallization cell.
Abstract:
A conductive bridge resistive memory device is provided, comprising a first electrode, a memory layer electrically coupled to the first electrode, an ion-supplying layer containing a source of ions of a first metal element capable of diffusion into and out of the memory layer, a semiconductor layer disposed between the memory layer and the ion-supplying layer, and a second electrode electrically coupled to the ion-supplying layer.