Abstract:
A package or a chip including a linear amplifier and a power amplifier is provided, wherein the linear amplifier is configured to receive an envelope tracking signal to generate an amplified envelope tracking signal, the power amplifier is supplied by an envelope tracking supply voltage comprising a DC supply voltage and the amplified envelope tracking signal, and the power amplifier is configured to receive an input signal to generate an output signal.
Abstract:
A linear amplifier of an envelope tracking supply modulator includes a pre-driver stage circuit and an output stage circuit. The pre-driver stage circuit receives an envelope input, and generates a pre-driver output according to the envelope input. The output stage circuit receives the pre-driver output, and generates an amplifier output according to the pre-driver output. The amplifier output is involved in setting a modulated supply voltage of a power amplifier. The output stage circuit has a plurality of amplifiers, including a first amplifier and a second amplifier. When the power amplifier has a first output power level, the first amplifier is involved in setting the amplifier output, and the second amplifier is not involved in setting the amplifier output. When the power amplifier has a second output power level different from the first output power level, the first amplifier and the second amplifier are involved in setting the amplifier output.
Abstract:
A circuit module includes a power amplifier, a switch, and a bypass capacitor. The power amplifier has a signal input node coupled to an input signal, a signal output node to generate an output signal, and a power input node coupled to a supply output signal of a supply modulator. The switch is coupled between the power input node of the power amplifier and the bypass capacitor. The bypass capacitor is an equivalently removable bypass capacitor coupled between the switch and a ground level.
Abstract:
A latch circuit includes an input stage, an amplifying stage and a clock gating circuit. The input stage is arranged for receiving at least a clock signal and a data control signal. The amplifying stage is coupled to the input stage and supplied by a supply voltage and a ground voltage, and is arranged for retaining a data value and outputting the data value according to the clock signal and the data control signal. The clock gating circuit is coupled to the amplifying stage, and is arranged for avoiding a short-circuit current between the supply voltage and the ground voltage.
Abstract:
A continuous time delta sigma modulator includes a summing circuit, a loop filter, an extraction circuit, a quantizer and a digital to analog converter. The summing circuit is arranged for subtracting a feedback signal by an input signal to generate a residual signal. The loop filter includes a plurality of amplifying stages connected in series and is arranged to receive the residual signal to generate a filtered residual signal. The extraction circuit is arranged for extracting a current from one of the amplifying stages and forwarding the extracted current to a following one of the amplifying stages. The quantizer is arranged for generating a digital output signal according to the filtered residual signal. The digital to analog converter is arranged for performing a digital to analog converting operation upon a signal derived from the digital output signal to generate the feedback signal to the summing circuit.
Abstract:
An amplifier includes a front-end gain stage and an AC-coupled push-pull output stage. The AC-coupled push-pull output stage includes a first transistor, having a source, a drain and a gate, wherein the source of the first transistor is coupled to a first voltage level. The AC-coupled push-pull output stage further includes a second transistor, having a source, a drain and a gate, wherein the source of the second transistor is coupled to a second voltage level, the gate of the second transistor is coupled to the front-end gain stage, and the drain of the second transistor is coupled to the drain of the first transistor to form an output terminal of the amplifier. Further, the AC-coupled push-pull output stage includes an AC-coupled capacitor, which is a passive two terminal electrical component coupled between the front-end gain stage and the gate of the first transistor.
Abstract:
A sigma-delta modulator is provided for generating a digital output signal. The sigma-delta modulator is used to generate a digital output signal. The sigma-delta modulator includes a multi-stage loop filter and a quantizer. The multi-stage loop filter receives an analog input signal and generates an integrated output signal according to the analog input signal. The quantizer is coupled to the multi-stage loop filter. The quantizer receives the integrated output signal and quantizes the integrated output signal to generate the digital output signal. Different feed-forward paths of the sigma-delta modulator are available for different frequency bands.
Abstract:
A sigma-delta modulator is provided for generating a digital output signal. The sigma-delta modulator includes a multi-stage loop filter, a quantizer, and a digital-to-analog converter. The multi-stage loop filter receives an analog input signal and generates an integrated output signal according to the analog input signal. Each stage of the multi-stage loop filter includes a feedback network. The quantizer receives the integrated output signal and quantizes the integrated output signal to generate the digital output signal. The digital-to-analog converter receives the digital output signal and converts the digital output signal to a compensation signal. The digital-to-analog converter provides the compensation signal to a plurality of internal nodes in the feedback network of the last stage of the multi-stage loop filter.