摘要:
A method of forming a portion (10) of a compound semiconductor MOSFET structure comprises forming a compound semiconductor layer structure (14) and an oxide layer (20) overlying the same. Forming the compound semiconductor structure (14) includes forming at least one channel material (16) and a group-III rich surface termination layer (18) overlying the at least one channel material. Forming the oxide layer (20) includes forming the oxide layer to overlie the group-III rich surface termination layer and comprises one of (a) depositing essentially congruently evaporating oxide of at least one of (a(i)) a ternary oxide and (a(ii)) an oxide more complex than a ternary oxide and (b) depositing oxide molecules, with use of at least one of (b(i)) a ternary oxide and (b(ii)) an oxide more complex than a ternary oxide.
摘要:
A dielectric layer comprised of lanthanum, lutetium, and oxygen that is formed between two conductors or a conductor and a substrate. In one embodiment, the dielectric layer is formed over the substrate without the need for an additional interfacial layer. In another embodiment, the dielectric layer is graded with respect to the lanthanum or lutetium content or in the alternative, may include aluminum. In yet another embodiment, an insulating layer is formed between the conductor or substrate and the dielectric layer or between both the conductor and substrate and the dielectric layer. The dielectric layer is preferably formed by molecular beam epitaxy, but can also be formed by atomic layer chemical vapor deposition, physical vapor deposition, organometallic chemical vapor deposition or pulsed laser deposition.
摘要:
A method of forming a dielectric layer structure on a supporting semiconductor structure having a first surface comprises providing a first beam of oxide; depositing a first layer of oxide on the first surface of the supporting semiconductor structure using the first beam of oxide, wherein the first layer of oxide has a second surface; terminating the first beam of oxide, and concurrently providing a second beam of oxide, a beam of metal and a beam of oxygen, wherein the first and second beams of oxide are separate and distinct beams of oxide; and depositing a second layer of oxide on the second surface simultaneously using the second beam of oxide, the beam of metal, and the beam of oxygen.
摘要:
A method of removing an amorphous oxide from a surface of a monocrystalline substrate is provided. The method includes depositing a passivation material overlying the amorphous oxide. The monocrystalline substrate is then heated so that the amorphous oxide layer decomposes into at least one volatile species that is liberated from the surface.
摘要:
A gate quality oxide-compound semiconductor structure (10) is formed by the steps of providing a III-V compound semiconductor wafer structure (13) with an atomically ordered and chemically clean semiconductor surface in an ultra high vacuum (UHV) system (20), directing a molecular beam (26) of gallium oxide onto the surface of the wafer structure to initiate the oxide deposition, and providing a second beam (28) of atomic oxygen to form a Ga.sub.2 O.sub.3 layer (14) with low defect density on the surface of the wafer structure. The second beam of atomic oxygen is supplied upon completion of the first 1-2 monolayers of Ga.sub.2 O.sub.3. The molecular beam of gallium oxide is provided by thermal evaporation from a crystalline Ga.sub.2 O.sub.3 or gallate source, and the atomic beam of oxygen is provided by either RF or microwave plasma discharge, thermal dissociation, or a neutral electron stimulated desorption atom source.
摘要翻译:通过在超高真空(UHV)系统(20)中提供具有原子级和化学清洁的半导体表面的III-V化合物半导体晶片结构(13)的步骤形成栅极质量氧化物 - 化合物半导体结构(10) 将氧化镓的分子束(26)引导到晶片结构的表面上以引发氧化物沉积,以及提供原子氧的第二光束(28)以在表面上形成具有低缺陷密度的Ga 2 O 3层(14) 的晶片结构。 当第一个1-2单层的Ga2O3完成时,第二个原子氧束被提供。 通过从结晶Ga 2 O 3或没食子酸酯源的热蒸发提供氧化镓的分子束,并且氧原子束由RF或微波等离子体放电,热解离或中性电子刺激的解吸原子源提供。
摘要:
An improved insulated gate field effect device is obtained by providing a substrate desirably comprising a III-V semiconductor, having a further semiconductor layer on the substrate adapted to contain the channel of the device between spaced apart source-drain electrodes formed on the semiconductor layer. A dielectric layer is formed on the semiconductor layer. A sealing layer is formed on the dielectric layer and exposed to an oxygen plasma. A gate electrode is formed on the dielectric layer between the source-drain electrodes. The dielectric layer preferably comprises gallium-oxide and/or gadolinium-gallium oxide, and the oxygen plasma is preferably an inductively coupled plasma. A further sealing layer of, for example, silicon nitride is desirably provided above the sealing layer. Surface states and gate dielectric traps that otherwise adversely affect leakage and channel sheet resistance are much reduced.
摘要:
A method of forming a III-V compound semiconductor structure (10) comprises providing a III-V compound semiconductor substrate including a semi-insulating substrate (12) having at least one epitaxial layer formed thereon and further having a gate insulator (14) overlying the at least one epitaxial layer. The at least one epitaxial layer formed on the semi-insulating substrate comprises an epi-structure suitable for use in the formation of a channel of a III-V compound semiconductor MOSFET device, wherein the channel (30) having a first polarity. The method further comprises forming a charge layer (22) at a surface of the gate insulator, the charge layer having a second polarity, wherein the second polarity is opposite to the first polarity.
摘要:
A method for removing silicon oxide from a surface of a substrate is disclosed. The method includes depositing material onto the silicon oxide (110) and heating the substrate surface to a sufficient temperature to form volatile compounds including the silicon oxide and the deposited material (120). The method also includes heating the surface to a sufficient temperature to remove any remaining deposited material (130).
摘要:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A monocrystalline layer is then formed over the accommodating buffer layer, such that a lattice constant of the monocrystalline layer substantially matches the lattice constant of a subsequently grown monocrystalline film.
摘要:
An improved insulated gate field effect device is obtained by providing a substrate desirably comprising a III-V semiconductor, having a further semiconductor layer on the substrate adapted to contain the channel of the device between spaced apart source-drain electrodes formed on the semiconductor layer. A dielectric layer is formed on the semiconductor layer. A sealing layer is formed on the dielectric layer and exposed to an oxygen plasma. A gate electrode is formed on the dielectric layer between the source-drain electrodes. The dielectric layer preferably comprises gallium-oxide and/or gadolinium-gallium oxide, and the oxygen plasma is preferably an inductively coupled plasma. A further sealing layer of, for example, silicon nitride is desirably provided above the sealing layer. Surface states and gate dielectric traps that otherwise adversely affect leakage and channel sheet resistance are much reduced.