摘要:
A reference voltage generation circuit includes a depletion type MOS transistor having a gate connected to a source and functioning as a constant current source. At least two enhancement type MOS transistors are connected to the depletion type MOS transistor, and have different threshold voltages, but substantially the same profiles of channel impurities. A pair of floating gate and control gate may be provided in one of the two enhancement type MOS transistors. One of the thresholds is determined by a difference in a coupling coefficient calculated from an area ratio of the floating gate and control gate to a channel so as to avoid fluctuations in performance of the MOS transistors due to temperature.
摘要:
A semiconductor device includes a semiconductor chip in which an internal circuit is formed, with the internal circuit having an output signal that fluctuates due to variation of fluctuation in electrical characteristics of multiple circuit elements constituting the internal circuit; a chip tab on which the semiconductor chip is mounted, with the semiconductor chip completely overlapping the chip tab and the circuit elements in the semiconductor chip arranged on the chip tab, and encapsulation resin within which the semiconductor chip and the chip tab are sealed. A horizontal surface area of the chip tab is smaller than that of the semiconductor chip, and a distance between a periphery of the chip tab and a periphery of the semiconductor chip is sufficient to cause stress exerted on the semiconductor chip by the encapsulation resin to be uniform across the horizontal surface area of the chip tab.
摘要:
A semiconductor device that is resin-sealed in a wafer level after a rewiring layer forming process and a metal post forming process forming a metal post are performed on a semiconductor substrate of the semiconductor device includes devices formed on the semiconductor substrate. Further all of the devices are disposed in respective positions other than positions overlapping a peripheral border of the metal post when viewed from a top of the semiconductor substrate.
摘要:
A disclosed semiconductor device includes a MOS transistor that causes no problems concerning the formation of a thick gate insulating film and that is applicable to high withstand voltage devices. A drain region has a double diffusion structure including an N-drain region 3d and an N+ drain region 11d. A gate electrode includes a first gate electrode 9 formed on an insulating film 7 and a second gate electrode 13 formed on the first gate electrode 9 via a gate electrode insulating film 11. Between the gate insulating film 7 and the N+ source region 11s, a field insulating film 15 is disposed, over which an edge of the first gate electrode 9 is disposed. A gate voltage applied to the second gate electrode 13 via a gate wiring 13g is divided between the gate insulating film 7 and the gate electrode insulating film 11.
摘要:
A disclosed stress-distribution detecting semiconductor package group includes multiple stress-distribution detecting semiconductor packages each formed by resin-encapsulating a stress detecting semiconductor chip of the same size using an identical resin encapsulation structure. Each stress detecting semiconductor chip includes a piezoelectric element for stress detection and at least two electrode pads electrically connected to the piezoelectric element to measure an electrical property of the piezoelectric element. The piezoelectric elements of the stress detecting semiconductor chips are respectively disposed on the corresponding stress detecting semiconductor chips to be located at different positions from one another when superimposed on a single imaginary semiconductor chip plane having the same plane size as that of the stress detecting semiconductor chips.
摘要:
A disclosed semiconductor device includes a MOS transistor that causes no problems concerning the formation of a thick gate insulating film and that is applicable to high withstand voltage devices. A drain region has a double diffusion structure including an N-drain region 3d and an N+ drain region 11d. A gate electrode includes a first gate electrode 9 formed on an insulating film 7 and a second gate electrode 13 formed on the first gate electrode 9 via a gate electrode insulating film 11. Between the gate insulating film 7 and the N+ source region 11s, a field insulating film 15 is disposed, over which an edge of the first gate electrode 9 is disposed. A gate voltage applied to the second gate electrode 13 via a gate wiring 13g is divided between the gate insulating film 7 and the gate electrode insulating film 11.