Abstract:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.
Abstract:
A nonvolatile memory device and a method of forming the nonvolatile memory device, the method including forming a tunnel insulating layer on a substrate, wherein forming the tunnel insulating layer includes forming a multi-element insulating layer by a process including sequentially supplying a first element source, a second element source, and a third element source to the substrate, forming a charge storage layer on the tunnel insulating layer, forming a blocking insulating layer on the charge storage layer, and forming a control gate electrode on the blocking insulating layer.
Abstract:
A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
Abstract:
Provided are three-dimensional semiconductor memory devices and methods of forming the same. The device includes a substrate, conductive patterns stacked on the substrate, and an active pattern penetrating the conductive patterns to be connected to the substrate. The active pattern may include a first doped region provided in an upper portion of the active pattern, and a diffusion-resistant doped region overlapped with at least a portion of the first doped region. The diffusion-resistant doped region may be a region doped with carbon.
Abstract:
A variable resistance memory device is provided including a plurality of lower electrodes disposed on a substrate. A plurality of variable resistors are disposed on the plurality of lower electrodes. A plurality of upper electrodes are disposed on the plurality of variable resistors. An interlayer insulating layer fills a space in the plurality of variable resistors. An anti-oxidation layer is disposed between the plurality of variable resistors and the interlayer insulating layer. The anti-oxidation layer covers side surfaces of the plurality of variable resistors, and the anti-oxidation layer comprises silicon and/or carbon.
Abstract:
A variable resistance memory device is provided including a plurality of lower electrodes disposed on a substrate. A plurality of variable resistors are disposed on the plurality of lower electrodes. A plurality of upper electrodes are disposed on the plurality of variable resistors. An interlayer insulating layer fills a space in the plurality of variable resistors. An anti-oxidation layer is disposed between the plurality of variable resistors and the interlayer insulating layer. The anti-oxidation layer covers side surfaces of the plurality of variable resistors, and the anti-oxidation layer comprises silicon and/or carbon.
Abstract:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.
Abstract:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.
Abstract:
A three-dimensional semiconductor memory device includes a peripheral circuit structure on a substrate, a horizontal active layer on the peripheral circuit structure, stacks provided on the horizontal active layer to include a plurality of electrodes, a vertical structure vertically penetrating the stacks, a common source region between ones of the stacks and in the horizontal active layer, and pick-up regions in the horizontal active layer. The horizontal active layer includes first, second, and third active semiconductor layers sequentially stacked on the peripheral circuit structure. The first and third active semiconductor layers are doped to have high and low impurity concentrations, respectively, and the second active semiconductor layer includes an impurity diffusion restraining material.
Abstract:
A semiconductor device can include a first substrate and conductive patterns on the first substrate, where the conductive patterns are disposed in stacks vertically extending from the substrate. An active pillar can be on the first substrate vertically extend from the first substrate throughthe conductive patterns to provide vertical string transistors on the first substrate. A second substrate can be on the conductive patterns and the active pillar opposite the first substrate. A peripheral circuit transistor can be on the second substrate opposite the first substrate, where the peripheral circuit transistor can be adjacent to and overlap an uppermost pattern of the conductive patterns.