Abstract:
In a channel protected thin film transistor in which a channel formation region is formed using an oxide semiconductor, an oxide semiconductor layer which is dehydrated or dehydrogenated by a heat treatment is used as an active layer, a crystal region including nanocrystals is included in a superficial portion in the channel formation region, and the rest portion is amorphous or is formed of a mixture of amorphousness/non-crystals and microcrystals, where an amorphous region is dotted with microcrystals. By using an oxide semiconductor layer having such a structure, a change to an n-type caused by entry of moisture or elimination of oxygen to or from the superficial portion and generation of a parasitic channel can be prevented and a contact resistance with a source and drain electrodes can be reduced.
Abstract:
A thin film transistor including an oxide semiconductor with favorable electrical characteristics is provided. The thin film transistor includes a gate electrode provided over a substrate, a gate insulating film provided over the gate electrode, an oxide semiconductor film provided over the gate electrode and on the gate insulating film, a metal oxide film provided on the oxide semiconductor film, and a metal film provided on the metal oxide film. The oxide semiconductor film is in contact with the metal oxide film, and includes a region whose concentration of metal is higher than that of any other region in the oxide semiconductor film (a high metal concentration region). In the high metal concentration region, the metal contained in the oxide semiconductor film may be present as a crystal grain or a microcrystal.
Abstract:
An object is to provide a semiconductor device including an oxide semiconductor, which has stable electrical characteristics and high reliability. In a manufacturing process of a bottom-gate transistor including an oxide semiconductor layer, heat treatment in an atmosphere containing oxygen and heat treatment in vacuum are sequentially performed for dehydration or dehydrogenation of the oxide semiconductor layer. In addition, irradiation with light having a short wavelength is performed concurrently with the heat treatment, whereby elimination of hydrogen, OH, or the like is promoted. A transistor including an oxide semiconductor layer on which dehydration or dehydrogenation treatment is performed through such heat treatment has improved stability, so that variation in electrical characteristics of the transistor due to light irradiation or a bias-temperature stress (BT) test is suppressed.
Abstract:
It is an object to provide an oxide semiconductor which is suitable for use in a semiconductor device. Alternatively, it is another object to provide a semiconductor device using the oxide semiconductor. Provided is a semiconductor device including an In—Ga—Zn—O based oxide semiconductor layer in a channel formation region of a transistor. In the semiconductor device, the In—Ga—Zn—O based oxide semiconductor layer has a structure in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0).
Abstract:
An object is to provide an oxide semiconductor having stable electric characteristics and a semiconductor device including the oxide semiconductor. A manufacturing method of a semiconductor film by a sputtering method includes the steps of holding a substrate in a treatment chamber which is kept in a reduced-pressure state; heating the substrate at lower than 400° C.; introducing a sputtering gas from which hydrogen and moisture are removed in the state where remaining moisture in the treatment chamber is removed; and forming an oxide semiconductor film over the substrate with use of a metal oxide which is provided in the treatment chamber as a target. When the oxide semiconductor film is formed, remaining moisture in a reaction atmosphere is removed; thus, the concentration of hydrogen and the concentration of hydride in the oxide semiconductor film can be reduced. Thus, the oxide semiconductor film can be stabilized.
Abstract:
The semiconductor device includes a driver circuit including a first thin film transistor and a pixel including a second thin film transistor over one substrate. The first thin film transistor includes a first gate electrode layer, a gate insulating layer, a first oxide semiconductor layer, a first oxide conductive layer, a second oxide conductive layer, an oxide insulating layer which is in contact with part of the first oxide semiconductor layer and which is in contact with peripheries and side surfaces of the first and second oxide conductive layers, a first source electrode layer, and a first drain electrode layer. The second thin film transistor includes a second gate electrode layer, a second oxide semiconductor layer, and a second source electrode layer and a second drain electrode layer each formed using a light-transmitting material.
Abstract:
An object is to provide a semiconductor device having a structure in which parasitic capacitance between wirings can be efficiently reduced. In a bottom gate thin film transistor using an oxide semiconductor layer, an oxide insulating layer used as a channel protection layer is formed above and in contact with part of the oxide semiconductor layer overlapping with a gate electrode layer, and at the same time an oxide insulating layer covering a peripheral portion (including a side surface) of the stacked oxide semiconductor layer is formed. Further, a source electrode layer and a drain electrode layer are formed in a manner such that they do not overlap with the channel protection layer. Thus, a structure in which an insulating layer over the source electrode layer and the drain electrode layer is in contact with the oxide semiconductor layer is provided.
Abstract:
There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. A light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air. Therefore, a light-emitting element with high reliability and long lifetime and a display device using the light-emitting element can be provided.
Abstract:
One object is to provide a semiconductor device with a structure which enables reduction in parasitic capacitance sufficiently between wirings. In a bottom-gate type thin film transistor including a stacked layer of a first layer which is a metal thin film oxidized partly or entirely and an oxide semiconductor layer, the following oxide insulating layers are formed together: an oxide insulating layer serving as a channel protective layer which is over and in contact with a part of the oxide semiconductor layer overlapping with a gate electrode layer; and an oxide insulating layer which covers a peripheral portion and a side surface of the stacked oxide semiconductor layer.
Abstract:
It is an object to provide a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. In addition, it is another object to manufacture a highly reliable semiconductor device at low cost with high productivity. In a semiconductor device including a thin film transistor, a semiconductor layer of the thin film transistor is formed with an oxide semiconductor layer to which a metal element is added. As the metal element, at least one of metal elements of iron, nickel, cobalt, copper, gold, manganese, molybdenum, tungsten, niobium, and tantalum is used. In addition, the oxide semiconductor layer contains indium, gallium, and zinc.