Abstract:
The present disclosure relates to a non-volatile memory cell on a semiconductor substrate, comprising a first transistor comprising a control gate, a floating gate and a drain region, a second transistor comprising a control gate, a floating gate and a drain region, in which the floating gates of the first and second transistors are electrically coupled, and the second transistor comprises a conducting region electrically coupled to its drain region and extending opposite its floating gate through a tunnel dielectric layer.
Abstract:
The present disclosure relates to a method for controlling two twin memory cells each comprising a floating-gate transistor comprising a state control gate, in series with a select transistor comprising a select control gate common to the two memory cells, the drains of the floating-gate transistors being connected to a same bit line, the method comprising steps of programming the first memory cell by hot-electron injection, by applying a positive voltage to the bit line and a positive voltage to the state control gate of the first memory cell, and simultaneously, of applying to the state control gate of the second memory cell a positive voltage capable of causing a programming current to pass through the second memory cell, without switching it to a programmed state.
Abstract:
The present disclosure relates to a memory comprising at least one word line comprising a row of split gate memory cells each comprising a selection transistor section comprising a selection gate and a floating-gate transistor section comprising a floating gate and a control gate. According to the present disclosure, the memory comprises a source plane common to the memory cells of the word line, to collect programming currents passing through memory cells during their programming, and the selection transistor sections of the memory cells are connected to the source plane. A programming current control circuit is configured to control the programming current passing through the memory cells by acting on a selection voltage applied to a selection line.
Abstract:
A method for manufacturing an electronic device includes locally implanting ionic species into a first region of a silicon nitride layer and into a first region of an electrically insulating layer located under the first region of the silicon nitride layer. A second region of the silicon nitride layer and a region of the electrically insulating layer located under the second region of the silicon nitride layer are protected from the implantation. The electrically insulating layer is disposed between a semi-conducting substrate and the silicon nitride layer. At least one trench is formed extending into the semi-conducting substrate through the silicon nitride layer and the electrically insulating layer. The trench separates the first region from the second region of the electrically insulating layer. The electrically insulating layer is selectively etched, and the etch rate of the electrically insulating layer in the first region is greater than the etch rate in the second region.
Abstract:
A semiconductor region includes an isolating region which delimits a working area of the semiconductor region. A trench is located in the working area and further extends into the isolating region. The trench is filled by an electrically conductive central portion that is insulated from the working area by an isolating enclosure. A cover region is positioned to cover at least a first part of the filled trench, wherein the first part is located in the working area. A dielectric layer is in contact with the filled trench. A metal silicide layer is located at least on the electrically conductive central portion of a second part of the filled trench, wherein the second part is not covered by the cover region.
Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
The array of diodes comprises a matrix plane of diodes arranged according to columns in a first direction and according to rows in a second direction orthogonal to the first direction. The said diodes comprise a cathode region of a first type of conductivity and an anode region of a second type of conductivity, the said cathode and anode regions being superposed and disposed on an insulating layer situated on top of a semiconductor substrate.
Abstract:
A memory device includes a first state transistor and a second state transistor having a common control gate. A first selection transistor is buried in the semiconductor body and coupled to the first state transistor so that current paths of the first selection transistor and first state transistor are coupled in series. A second selection transistor is buried in the semiconductor body and coupled to the second state transistor so that current paths of the second selection transistor and second state transistor are coupled in series. The first and second selection transistors have a common buried selection gate. A dielectric region is located between the common control gate and the semiconductor body. A first bit line is coupled to the first state transistor and a second bit line is coupled to the second state transistor.
Abstract:
The array of diodes comprises a matrix plane of diodes arranged according to columns in a first direction and according to rows in a second direction orthogonal to the first direction. The said diodes comprise a cathode region of a first type of conductivity and an anode region of a second type of conductivity, the said cathode and anode regions being superposed and disposed on an insulating layer situated on top of a semiconductor substrate.
Abstract:
An integrated circuit is formed on a semiconductor substrate and includes a trench conductor and a first transistor formed on the surface of the substrate. The transistor includes: a transistor gate structure, a first doped region extending in the substrate between a first edge of the gate structure and an upper edge of the trench conductor, and a first spacer formed on the first edge of the gate structure and above the first doped region. The first spacer completely covers the first doped region and a silicide is present on the trench conductor but is not present on the surface of the first doped region.