Abstract:
A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
Abstract:
An optical mask for forming a pattern is provided. The optical mask includes: a substrate including a light blocking pattern formed on portions of the substrate, wherein the light blocking pattern includes a halftone layer and a light blocking layer formed on the halftone layer, and the halftone layer and the light blocking layer overlap such that at least an edge portion of the halftone layer is exposed. A pitch of the light blocking pattern may about 6 μm, and a transmission ratio of the halftone layer may range from about 10% to about 50%.
Abstract:
A mask includes a transparent substrate and a light blocking pattern. The light blocking pattern includes a light blocking part and a diffraction pattern. The light blocking part is disposed on the transparent substrate and is configured to block light. The diffraction pattern includes a plurality of protrusion parts and is configured to diffract the light. The plurality of protrusion parts protrudes from a side of the blocking part and is separated from each other.
Abstract:
A method of forming a pattern includes: preparing a target substrate including a photoresist layer on a base substrate; aligning a phase shift mask to the target substrate, the phase shift mask including a mask substrate comparted into a first region including a first sub region and second sub regions at sides of the first sub region, and second regions at sides of the first region, the phase shift mask including a phase shift layer on the mask substrate corresponding to the first region; fully exposing the photoresist layer at the first sub region and the second regions by utilizing the phase shift mask; and removing the photoresist layer at the first sub region and the second regions to form first and second photoresist patterns corresponding to the second sub regions. Transmittance of the phase shift layer is selected to fully expose the photoresist layer in the first sub region.
Abstract:
Provided is a method of manufacturing a display apparatus, the method including forming an amorphous silicon layer on a substrate; changing amorphous silicon in the amorphous silicon layer into crystalline silicon by irradiating the amorphous silicon with a laser beam emitted through a phase shift mask; and forming a display device, the phase shift mask including a base substrate; a barrier layer on the base substrate and including a plurality of transmissive portions which are spaced apart from each other in a first direction; and phase shift portions which alternately fill the plurality of transmissive portions in the first direction.
Abstract:
A method for forming a pattern includes forming a photosensitive film by coating a photosensitive resin composition on a substrate, exposing the photosensitive film to light through a mask that includes a light transmission region and a non-light transmission region, coating a developing solution on the photosensitive film, and forming a photosensitive film pattern by baking the photosensitive film, wherein the photosensitive resin composition includes an alkali soluble base resin, a photoacid generator and a photoactive compound.
Abstract:
A phase shift mask enables much smaller scale of electronic circuit pattern. A phase shift mask comprises a transparent substrate, a phase shift pattern arranged on the transparent substrate to change a phase of light that penetrates the transparent substrate, and a metal coating layer arranged on at least a part of a surface of the phase shift pattern.
Abstract:
A mask may include a circuit area and a pixel area. The circuit area includes a circuit pattern. The pixel area includes a pixel pattern which is extended in a length direction and an assist pattern which is at an end portion of the pixel pattern and adjacent to the circuit area.